×

Flows of liquids with a yield strength in pipes under a pulsating pressure drop. (English. Russian original) Zbl 1530.76003

Proc. Steklov Inst. Math. 322, 273-286 (2023); translation from Tr. Mat. Inst. Steklova 322, 282-295 (2023).
The authors focus on the study of pulsating fluid flows using the Herschel-Bulkley rheological model, which accounts for the presence of yield strength and nonlinear dependence of stress on strain rate. The Herschel-Bulkley model has been previously used to describe pulsating blood flow in blood vessels, particularly in the presence of abnormal narrowing called stenosis. The authors numerically investigate the effects of pressure drop fluctuations on velocity profiles, flow rates, friction, and the formation of quasi-solid zones in the flow, with specific attention given to pulsating flows of dilatant fluids and fluids with non-monotonic viscosity coefficients.
The paper novelty lies in investigating pulsating flows of non-Newtonian fluids possessing a yield strength. It provides an approximate analytical solution for these flows and explores the impact of pressure drop pulsations on the flow rate. The results indicate that the increase in flow rate is roughly proportional to the relative amplitude of pressure drop oscillations. The paper also delves into the discussion of energy requirements in pulsating flows compared to steady flows, emphasizing the importance of studying pulsating flows of non-Newtonian fluids in diverse applications.
The rheological properties of these fluids are characterized by the Herschel-Bulkley model, encompassing parameters such as yield strength \( (\tau_y )\), consistency \( (K) \), and power index \( (n) \). The study investigates the effects of pressure drop pulsations on velocity profiles, flow rates, friction, and the region where the fluid moves without deformation. It concludes that for fluids with a power index less than or equal to 1, the mean flow rate in pulsating flow surpasses that in the absence of pulsations. Conversely, for fluids with a power index greater than 1, the superimposition of pressure drop pulsations can either increase or decrease the mean flow rate, depending on the frequency and amplitude of oscillations.

MSC:

76A05 Non-Newtonian fluids
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Abbas, Z.; Shabbir, M. S.; Ali, N., Analysis of rheological properties of Herschel-Bulkley fluid for pulsating flow of blood in \(\omega \)-shaped stenosed artery, AIP Adv., 7, 10 (2017) · doi:10.1063/1.5004759
[2] Barnes, H. A., Shear-thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids, J. Rheol., 33, 2, 329-366 (1989) · doi:10.1122/1.550017
[3] Barnes, H. A.; Townsend, P.; Walters, K., Flow of non-Newtonian liquids under a varying pressure gradient, Nature, 224, 5219, 585-587 (1969) · doi:10.1038/224585a0
[4] Barnes, H. A.; Townsend, P.; Walters, K., On pulsatile flow of non-Newtonian liquids, Rheol. Acta, 10, 4, 517-527 (1971) · doi:10.1007/BF03396402
[5] Bessonov, N.; Sequeira, A.; Simakov, S.; Vassilevskii, Yu.; Volpert, V., Methods of blood flow modelling, Math. Model. Nat. Phenom., 11, 1, 1-25 (2016) · Zbl 1384.92024 · doi:10.1051/mmnp/201611101
[6] Çarpinlioǧlu, M. Ö.; Gündoǧdu, M. Y., A critical review on pulsatile pipe flow studies directing towards future research topics, Flow Meas. Instrum., 12, 3, 163-174 (2001) · doi:10.1016/S0955-5986(01)00020-6
[7] Carvalho, V.; Pinho, D.; Lima, R. A.; Teixeira, J. C.; Teixeira, S., Blood flow modeling in coronary arteries: A review, Fluids, 6, 2 (2021) · doi:10.3390/fluids6020053
[8] Daprà, I.; Scarpi, G., Pulsatile poiseuille flow of a viscoplastic fluid in the gap between coaxial cylinders, J. Fluids Eng., 133, 8 (2011) · doi:10.1115/1.4003926
[9] David, J.; Filip, P.; Kharlamov, A. A., Empirical modelling of nonmonotonous behaviour of shear viscosity, Adv. Mater. Sci. Eng., 2013 (2013) · doi:10.1155/2013/658187
[10] Drozdova, Yu. A.; Eglit, M. E.; Yakubenko, A. E., Influence of pressure pulsations on the dynamics of non-Newtonian fluid flows in pipes, XII All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics: Proc., 343-344 (2019), Ufa: Bashk. Gos. Univ., Ufa
[11] Edwards, M. F.; Nellist, D. A.; Wilkinson, W. L., Unsteady, laminar flows of non-Newtonian fluids in pipes, Chem. Eng. Sci., 27, 2, 295-306 (1972) · doi:10.1016/0009-2509(72)85066-8
[12] Edwards, M. F.; Nellist, D. A.; Wilkinson, W. L., Pulsating flow on non-Newtonian fluids in pipes, Chem. Eng. Sci., 27, 3, 545-553 (1972) · doi:10.1016/0009-2509(72)87010-6
[13] Eglit, M. E.; Yakubenko, A. E., Numerical modeling of slope flows entraining bottom material, Cold Reg. Sci. Technol., 108, 139-148 (2014) · doi:10.1016/j.coldregions.2014.07.002
[14] Herschel, W. H.; Bulkley, R., Konsistenzmessungen von Gummi-Benzollösungen, Kolloid-Z., 39, 4, 291-300 (1926) · doi:10.1007/BF01432034
[15] Kajiuchi, T.; Saito, A., Flow enhancement of laminar pulsating flow of Bingham plastic fluids, J. Chem. Eng. Japan, 17, 1, 34-38 (1984) · doi:10.1252/jcej.17.34
[16] Konan, N. A.; Rosenbaum, E.; Massoudi, M., On the response of a Herschel-Bulkley fluid due to a moving plate, Polymers, 14, 18 (2022) · doi:10.3390/polym14183890
[17] Morris, J. F., Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena, Annu. Rev. Fluid Mech., 52, 121-144 (2020) · Zbl 1439.76170 · doi:10.1146/annurev-fluid-010816-060128
[18] Nakamura, M.; Sawada, T., Numerical study on the laminar pulsatile flow of slurries, J. Non-Newton. Fluid Mech., 22, 2, 191-206 (1987) · doi:10.1016/0377-0257(87)80035-6
[19] Pan, Z.; Cagny, H. de; Weber, B.; Bonn, D., \( \text{S} \)-shaped flow curves of shear thickening suspensions: Direct observation of frictional rheology, Phys. Rev. E, 92, 3 (2015) · doi:10.1103/PhysRevE.92.032202
[20] Papanastasiou, T. C., Flows of materials with yield, J. Rheol., 31, 5, 385-404 (1987) · Zbl 0666.76022 · doi:10.1122/1.549926
[21] Papanastasiou, T. C.; Boudouvis, A. G., Flows of viscoplastic materials: Models and computations, Comput. Struct., 64, 1-4, 677-694 (1997) · Zbl 0936.74504 · doi:10.1016/S0045-7949(96)00167-8
[22] Phan-Thien, N.; Dudek, J., Pulsating flow of a plastic fluid, Nature, 296, 5860, 843-844 (1982) · doi:10.1038/296843a0
[23] Roberts, G. P.; Barnes, H. A.; Carew, P., Modelling the flow behaviour of very shear-thinning liquids, Chem. Eng. Sci., 56, 19, 5617-5623 (2001) · doi:10.1016/S0009-2509(01)00291-3
[24] Sankar, D. S.; Hemalatha, K., Pulsatile flow of Herschel-Bulkley fluid through stenosed arteries—A mathematical model, Int. J. Non-linear Mech., 41, 8, 979-990 (2006) · Zbl 1160.76446 · doi:10.1016/j.ijnonlinmec.2006.02.007
[25] Valencia, A.; Zaratea, A.; Galvez, M.; Badilla, L., Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm, Int. J. Numer. Methods Fluids, 50, 6, 751-764 (2006) · Zbl 1082.92027 · doi:10.1002/fld.1078
[26] Womersley, J. R., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol., 127, 3, 553-563 (1955) · doi:10.1113/jphysiol.1955.sp005276
[27] Yilmaz, F.; Gundogdu, M. Y., A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea-Aust. Rheol. J., 20, 4, 197-211 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.