×

On the \(L_p\)-Brunn-Minkowski and dimensional Brunn-Minkowski conjectures for log-concave measures. (English) Zbl 1469.52008

Summary: We study several of the recent conjectures in regards to the role of symmetry in the inequalities of Brunn-Minkowski type, such as the \(L_p\)-Brunn-Minkowski conjecture of Böröczky, Lutwak, Yang and Zhang, and the Dimensional Brunn-Minkowski conjecture of Gardner and Zvavitch, in a unified framework. We obtain several new results for these conjectures. We show that when \(K \subset L,\) the multiplicative form of the \(L_p\)-Brunn-Minkowski conjecture holds for Lebesgue measure for \(p \geq 1-Cn^{-0.75}\), which improves upon the estimate of Kolesnikov and Milman in the partial case when one body is contained in the other. We also show that the multiplicative version of the \(L_p\)-Brunn-Minkowski conjecture for the standard Gaussian measure holds in the case of sets containing sufficiently large ball (whose radius depends on \(p)\). In particular, the Gaussian Log-Brunn-Minkowski conjecture holds when \(K\) and \(L\) contain \(\sqrt{0.5 (n+1)}B_2^n.\) We formulate an a-priori stronger conjecture for log-concave measures, extending both the \(L_p\)-Brunn-Minkowski conjecture and the Dimensional one, and verify it in the case when the sets are dilates and the measure is Gaussian. We also show that the Log-Brunn-Minkowski conjecture, if verified, would yield this more general family of inequalities. Our results build up on the methods developed by Kolesnikov and Milman as well as Colesanti, Livshyts, Marsiglietti. We furthermore verify that the local version of these conjectures implies the global version in the setting of general measures, and this step uses methods developed recently by Putterman.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry

References:

[1] Borell, C., Convex set functions in d-space, Period. Math. Hungar., 6, 2, 111-136 (1975) · Zbl 0307.28009 · doi:10.1007/BF02018814
[2] Böröczky, KJ; Lutwak, E.; Yang, D.; Zhang, G., The log-Brunn-Minkowski-inequality, Adv. Math., 231, 3-4, 1974-1997 (2012) · Zbl 1258.52005 · doi:10.1016/j.aim.2012.07.015
[3] Böröczky, KJ; Lutwak, E.; Yang, D.; Zhang, G., The logarithmic Minkowski problem, J. Am. Math. Soc., 26, 3, 831-852 (2013) · Zbl 1272.52012 · doi:10.1090/S0894-0347-2012-00741-3
[4] Böröczky, KJ; Lutwak, E.; Yang, D.; Zhang, G., Affine images of isotropic measures, J. Differ. Geom., 99, 3, 407-442 (2015) · Zbl 1325.28004
[5] Brascamp, H.; Lieb, E., On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation, J. Funct. Anal., 22, 4, 366-389 (1976) · Zbl 0334.26009 · doi:10.1016/0022-1236(76)90004-5
[6] Chen, S, Huang, Y., Li, Q., Liu, J.: \(L_p\)-Brunn-Minkowski inequality for \(p\in (1-\frac{c}{n^{\frac{3}{2}}},1)\), preprint · Zbl 1440.52013
[7] Colesanti, A., From the Brunn-Minkowski inequality to a class of Poincaré type inequalities, Commun. Contemp. Math., 10, 5, 765-772 (2008) · Zbl 1157.52002 · doi:10.1142/S0219199708002971
[8] Colesanti, A., Livshyts, G.: Uniqueness of a Smooth Convex Body with a Uniform Cone Volume Measure in the Neighborhood of a Ball, preprint · Zbl 1473.52016
[9] Colesanti, A.; Livshyts, G.; Marsiglietti, A., On the stability of Brunn-Minkowski type inequalities, J. Funct. Anal, 273, 3, 1120-1139 (2017) · Zbl 1369.52013 · doi:10.1016/j.jfa.2017.04.008
[10] Cordero-Erausquin, D.; Fradelizi, M.; Maurey, B., The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal., 214, 2, 410-427 (2004) · Zbl 1073.60042 · doi:10.1016/j.jfa.2003.12.001
[11] Evans, L.: Partial Differential Equations, AMS, Graduate Studies in Mathematics. Vol. 19, pp. 749 (2010) · Zbl 1194.35001
[12] Gardner, R., The Brunn-Minkowski inequality, Bull. Am. Math. Soc., 39, 355-405 (2002) · Zbl 1019.26008 · doi:10.1090/S0273-0979-02-00941-2
[13] Gardner, R.; Zvavitch, A., Gaussian Brunn-Minkowski-type inequalities, Trans. Am. Math. Soc., 362, 10, 5333-5353 (2010) · Zbl 1205.52002 · doi:10.1090/S0002-9947-2010-04891-3
[14] Hug, D., Contributions to affine surface area, Manuscr. Math., 91, 3, 283-301 (1996) · Zbl 0871.52004 · doi:10.1007/BF02567955
[15] Kannan, R.; Lovasz, L.; Simonovits, M., Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom., 13, 3-4, 541-559 (1995) · Zbl 0824.52012 · doi:10.1007/BF02574061
[16] Kolesnikov, A.V., Livshyts, G.V.: On the Gardner-Zvavitch Conjecture: Symmetry in the Inequalities of the Brunn-Minkowski Type, to appear in Advances in Mathematics
[17] Kolesnikov, AV; Milman, E., Brascamp-Lieb-type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal., 27, 2, 1680-1702 (2017) · Zbl 1372.53040 · doi:10.1007/s12220-016-9736-5
[18] Kolesnikov, AV; Milman, E.; Klartag, B.; Milman, E., Sharp poincare-type inequality for the Gaussian measure on the boundary of convex sets, Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, 221-234 (2017), Cham: Springer, Cham · Zbl 1366.60056 · doi:10.1007/978-3-319-45282-1_15
[19] Kolesnikov, AV; Milman, E., Poincaré and Brunn-Minkowski inequalities on the boundary of weighted Riemannian manifolds, Am. J. Math., 140, 1147 (2018) · Zbl 1408.53047 · doi:10.1353/ajm.2018.0027
[20] Kolesnikov, A.V., Milman, E.: Local \(L_p\)-Brunn-Minkowski inequalities for \(p<1\), preprint
[21] Lee, Y., Vempala, S.: Eldan’s Stochastic Localization and the KLS Hyperplane Conjecture: An Improved Lower Bound for Expansion. arXiv:1612.01507
[22] Livshyts, GV, Maximal surface area of a convex set in \(R^n\) with respect to exponential rotation invariant measures, J. Math. Anal. Appl., 404, 231-238 (2013) · Zbl 1327.49077 · doi:10.1016/j.jmaa.2013.03.014
[23] Livshyts, GV, Maximal surface area of a convex set in \({\mathbb{R}}^n\) with respect to log concave rotation invariant measures, GAFA Semin. Notes, 2116, 355-384 (2014) · Zbl 1330.52006
[24] Livshyts, GV, Maximal surface area of a convex polytope in \(R^n\) with respect to log-concave rotation invariant measures, Adv. Appl. Math., 70, 54-69 (2015) · Zbl 1330.52008 · doi:10.1016/j.aam.2015.06.004
[25] Livshyts, GV, An extension of Minkowski’s theorem and its applications to questions about projections for measures, Adv. Math., 356, 106803 (2019) · Zbl 1429.52004 · doi:10.1016/j.aim.2019.106803
[26] Livshyts, G.; Marsiglietti, A.; Nayar, P.; Zvavitch, A., On the Brunn-Minkowski inequality for general measures with applications to new isoperimetric-type inequalities, Trans. Am. Math. Soc., 369, 8725-8742 (2017) · Zbl 1376.52014 · doi:10.1090/tran/6928
[27] Lusternik, LA, Die Brunn-Minkowskische Ungleichung für beliebige messbare Mengen, C. R. Acad. Sci. URSS, 8, 55-58 (1935) · JFM 61.0760.03
[28] Nayar, P.; Tkocz, T., A Note on a Brunn-Minkowski inequality for the Gaussian measure, Proc. Am. Math. Soc., 141, 11, 4027-4030 (2013) · Zbl 1305.52017 · doi:10.1090/S0002-9939-2013-11609-6
[29] Nazarov, FL, On the maximal perimeter of a convex set in \({\mathbb{R}}^n\) with respect to Gaussian measure, Geom. Asp. Funct. Anal., 2003, 169-187 (1807) · Zbl 1036.52014
[30] Putterman, E.: Equivalence of the local and global versions of the \(L^p-\) Brunn-Minkowski inequality, preprint. arxiv:1909.03729 · Zbl 1461.52010
[31] Rotem, L.: A Letter: The log-Brunn-Minkowski Inequality for Complex Bodies. http://www.tau.ac.il/ liranro1/papers/complexletter.pdf
[32] Saroglou, C., Remarks on the conjectured log-Brunn-Minkowski inequality, Geom. Dedic., 177, 1, 353-365 (2015) · Zbl 1326.52010 · doi:10.1007/s10711-014-9993-z
[33] Saroglou, C.: More on Logarithmic Sums of Convex Bodies, preprint. arXiv:1409.4346 · Zbl 1352.52001
[34] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, Second Expanded Edition, Encyclopedia of Mathematics and Its Applications (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.