×

Toeplitz operators for the Gabor spherical mean transform. (English) Zbl 1517.94026

Summary: We investigate the Gabor spherical mean transform and demonstrate the quantitative Shapiro dispersion uncertainty principle and the umbrella theorem specifically tailored for this transform. Next, we define the Toeplitz operators \({\mathcal{L}}^{g_1, g_2}_{{\mathcal{S}}}\) in connection with two window functions \(g_1\) and \(g_2\), as well as the symbol \({\mathcal{S}}\). We establish the boundedness and compactness of these operators. Ultimately, we introduce the Schatten-von Neumann class \(S_p\), where \(p \in [1, +\infty]\), and show that the Toeplitz operators are members of the class \(S_p\). Additionally, we provide a proof for a trace formula.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42A45 Multipliers in one variable harmonic analysis
44A35 Convolution as an integral transform
47G30 Pseudodifferential operators
Full Text: DOI

References:

[1] Balazs, P., Hilbert-Schmidt operators and frames-classification, best approximation by multipliers and algorithms, Int. J. Wavelets Multiresolution Inf. Process., 6, 2, 315-330 (2008) · Zbl 1268.42052 · doi:10.1142/S0219691308002379
[2] Balazs, P.; Bayer, D.; Rahimi, A., Multipliers for continuous frames in Hilbert spaces, J. Phys. A Math. Theor., 45, 24 (2012) · Zbl 1252.46008 · doi:10.1088/1751-8113/45/24/244023
[3] Bonami, A.; Demange, B.; Jaming, P., Hermite functions and uncertainty principles for the Fourier and the Gabor transforms, Rev Mat lberoamericana., 19, 23-55 (2003) · Zbl 1037.42010 · doi:10.4171/RMI/337
[4] Cordero, E.; Grochenig, K., Time-frequency analysis of localization operators, J. Funct. Anal., 205, 1, 107-131 (2003) · Zbl 1047.47038 · doi:10.1016/S0022-1236(03)00166-6
[5] Daubechies, I., Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inf. Theory, 34, 605-612 (1988) · Zbl 0672.42007 · doi:10.1109/18.9761
[6] Daubechies, I., The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36, 961-1005 (1990) · Zbl 0738.94004 · doi:10.1109/18.57199
[7] Daubechies, I.; Paul, T., Time-frequency localization Operators—a geometric phase space approch:2, Inverse Prob., 4, 661-680 (1988) · Zbl 0701.42004 · doi:10.1088/0266-5611/4/3/009
[8] De Mari, F.; Nowak, K., Localization type Berezin-Toeplitz operators on bounded symmetric domains, J. Geom. Anal., 12, 1, 9-27 (2002) · Zbl 1040.47017 · doi:10.1007/BF02930858
[9] De Mari, F.; Feichtinger, H.; Nowak, K., Uniform eigenvalue estimates for timefrequency localization operators, J. Lond. Math. Soc., 65, 3, 720-732 (2002) · Zbl 1033.47021 · doi:10.1112/S0024610702003101
[10] Flandrin, P., Time-Frequency/Time-Scale Analysis (1999), London: Academic Press, London · Zbl 0954.94003
[11] Folland, GB, Harmonic Analysis in Phase Space (1989), Princeton: Princeton University Press, Princeton · Zbl 0682.43001 · doi:10.1515/9781400882427
[12] Gabor, D., Theory of communication, J. Inst. Electr. Eng. Part III Radio Commun. Eng., 93, 26, 429-457 (1946)
[13] Gröchenig, K., Foundations of Time-Frequency Analysis (2001), Berlin: Springer, Berlin · Zbl 0966.42020 · doi:10.1007/978-1-4612-0003-1
[14] Gröchenig, K.; Zimmermann, G., Hardy’s theorem and the short-time Fourier transform of Schwartz functions, J. Lond. Math. Soc., 54, 1, 64-72 (1996)
[15] Hammami, A., Rachdi, L.T.: Heisenberg type uncertainty principle for the Gabor spherical mean transform. Integral Transform. Special Funct. 1476-8291 (2020) · Zbl 1479.42029
[16] Malinnikova, E., Orthonormal sequences in \({\cal{L} }^2({\mathbb{R} }^d)\) and time frequency localization, J. Fourier Anal. Appl., 16, 983-1006 (2010) · Zbl 1210.42020 · doi:10.1007/s00041-009-9114-9
[17] Mallat, SG, A Wavelet Tour of Signal Processing (1999), London: Academic Press, London · Zbl 0998.94510
[18] Ramanathan, J.; Topiwala, P., Time-frequency localization via the Weyl correspondence, SIAM J. Math. Anal., 24, 1378-1393 (1993) · Zbl 0787.94003 · doi:10.1137/0524080
[19] Saitoh, S., Theory of Reproducing Kernels and its Applications (1988), Harlown: Longman Higher Education, Harlown · Zbl 0652.30003
[20] Shapiro, HS, A quantitative multivariate version of Shapiro’s theorem for generalized dispersion, J. Multivar. Anal., 4, 49-59 (1964)
[21] Shapiro, H.S.: Uncertainty principles for bases in \({\cal{L}\mathit{}^2({\mathbb{R}}})\). In: Proceedings of the Conference on Harmonic Analysis and Number Theory, CIRM, Marseille-Luminy, October 16-21 (2005)
[22] Simon, B.: Schatten-von Neumann class \(S_p\). In: Trace Ideals and Their Applications, pp. 33-78. American Mathematical Society (2011)
[23] Stein, EM, Interpolation of linear operators, Trans. Am. Math. Soc., 83, 482-492 (1956) · Zbl 0072.32402 · doi:10.1090/S0002-9947-1956-0082586-0
[24] Wong, MW, Weyl Transform (1998), New York: Springer, New York · Zbl 0908.44002
[25] Wong, M.W.: Localization Operators. Seoul National University Research Institute of Mathematics, Global Analysis Research Center, Seoul (1999) · Zbl 0945.42025
[26] Wong, MW, Wavelet Transforms and Localization Operators (2002), Berlin: Springer, Berlin · Zbl 1016.42017 · doi:10.1007/978-3-0348-8217-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.