×

Hardy spaces and the \(Tb\) Theorem. (English) Zbl 1059.42015

Summary: It is well known that Calderón-Zygmund operators \(T\) are bounded on \(H^p\) for \(\frac{n}{n+1}<p\leq 1\) provided \(T^*(1)= 0\). In this article, it is shown that if \(T^*(b)=0\), where \(b\) is a para-accretive function, \(T\) is bounded from the classical Hardy space \(H^p\) to a new Hardy space \(H^p_b\). To develop an \(H^p_b\) theory, a discrete Calderón-type reproducing formula and Plancherel-Pólya-type inequalities associated to a para-accretive function are established. Moreover, the result of G. David, J. L. Journé and S. Semmes [Rev. Mat. Iberoam. 1, No. 4, 1–56 (1985; Zbl 0604.42014)] about the \(L^p\), \(1<p<\infty\), boundedness of the Littlewood-Paley \(g\) function associated to a para-accretive function is generalized to the case of \(p\leq 1\). A new characterization of the classical Hardy spaces by using more general cancellation adapted to para-accretive functions is also given. These results complement the celebrated Calderón-Zygmund operator theory.

MSC:

42B25 Maximal functions, Littlewood-Paley theory
42B30 \(H^p\)-spaces

Citations:

Zbl 0604.42014
Full Text: DOI

References:

[1] Calderón, A. P., Commutators of singular integral operators, Proc. Nat. Acad. Sci. USA, 53, 1092-1097 (1965) · Zbl 0151.16901 · doi:10.1073/pnas.53.5.1092
[2] Calderón, A. P., Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. USA, 74, 1324-1327 (1977) · Zbl 0373.44003 · doi:10.1073/pnas.74.4.1324
[3] Chang, S.-Y. A.; Chang; Fefferman, R., The Calderón-Zygmund decomposition on product domains, Am. J. Math., 104, 455-468 (1982) · Zbl 0513.42019 · doi:10.2307/2374150
[4] Coifman, R. R.; McIntosh, A.; Meyer, Y., L’intégrale de Cauchy définit un opérateur borné sur les courbes Lipschitziennes, Ann. Math., 116, 361-387 (1982) · Zbl 0497.42012 · doi:10.2307/2007065
[5] Coifman, R.R. and Meyer, Y. Au-dela operateurs pseudo-differentials,Asterisque,57, (1978). · Zbl 0483.35082
[6] Coifman, R. R.; Weiss, G., Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes (1971), Berlin and New York: Springer-Verlag, Berlin and New York · Zbl 0224.43006
[7] Coifman, R. R.; Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Am. Math. Soc., 83, 569-645 (1977) · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[8] David, G.; Journé, J.-L., A boundedness criterion for generalized Calderón-Zygmund operators, Ann. Math., 120, 371-397 (1984) · Zbl 0567.47025 · doi:10.2307/2006946
[9] David, G.; Journé, J.-L.; Semmes, S., Operateurs de Calderón-Zygmund, fonctions para-accretive et interpolation, Rev. Mat. Iberoamericana, 1, 1-56 (1985) · Zbl 0604.42014
[10] Fefferman, C.; Stein, E. M., Some maximal inequalities, Am. J. Math., 93, 107-115 (1971) · Zbl 0222.26019 · doi:10.2307/2373450
[11] Folland, G. B.; Stein, E. M., Hardy Spaces on Homogeneous Groups (1982), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0508.42025
[12] Frazier, M.; Jawerth, B., A discrete transform and decompositions of distribution spaces, J. Funct. Anal., 93, 34-170 (1990) · Zbl 0716.46031 · doi:10.1016/0022-1236(90)90137-A
[13] Han, Y., Calderón-type reproducing formula and theTb theorem, Rev. Mat. Iberoamericana, 10, 51-91 (1994) · Zbl 0797.42009
[14] Han, Y.; Sawyer, E., Para-accretive functions, the weak boundedness property and theTb theorem, Rev. Mat. Iberoamericana, 10, 17-41 (1990) · Zbl 0723.42005
[15] McIntosh, A.; Meyer, Y., Algèbres d’opérateurs définis par intégrales singulières, C.R. Acad. Sci. Paris Sér. I Math., 301, 395-397 (1985) · Zbl 0584.47030
[16] Meyer, Y. and Coifman, R.R.Wavelets. Calderón-Zygmund and Multilinear Operators, Cambridge Studies in Advanced Mathematics,48, (1997). · Zbl 0916.42023
[17] Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals (1993), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0821.42001
[18] Triebel, H.Theory of Function Spaces, Birkhäuser-Verlag, (1983). · Zbl 0546.46028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.