×

Transcendency of some constants related to integer sequences of polynomial iterations. (English) Zbl 1485.11110

Let \(P(x)=a_0x^d+a_1x^{d-1}+\dots +a_d\in \mathbb Q[x]\) with \(d\geq2\), \(a_0>0\) and such that \(a_0^{\frac 1{d-1}}\in\mathbb Q\). Let \(\{x_n\}_{n=0}^\infty\) be a sequence of positive integers such that \(x_{n+1}=P(x_n)\) for all \(n=0,1,\dots\) and \(\lim_{n\to\infty}x_n=\infty\). Set \(\alpha =\lim_{n\to\infty}x_n^{d^{-n}}\) and \(y_0=a_0^{\frac 1{d-1}}(x_0-\frac {a_1}{da_0})\). Then the author proves that the number \(\alpha >1\) is transcendental unless \(\frac 1{a_0}P(x-\frac {a_1}{da_0})+\frac {a_1}{da_0^2}=x^d\) (here \(\alpha =\mid y_0\mid \geq 2\) and \(\alpha\in\mathbb Z^+\)) or \(a_0^{\frac 1{d-1}}(P(a_0^{\frac {-1}{d-1}}-\frac {a_1}{da_0})+\frac {a_1}{da_0})=2T_d(\frac x2)\) (here \(\alpha =\frac {\mid y_0\mid}2+\sqrt {\frac {y_0^2}4-1})\), \(\mid y_0\mid \geq 3\), \(\mid y_0\mid\in\mathbb Z^+\)), where \(T_d(x)\) is the Chebyshev polynomial of the first kind of degree \(d\).

MSC:

11J81 Transcendence (general theory)
11B37 Recurrences
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure

Software:

OEIS
Full Text: DOI

References:

[1] Aho, AV; Sloane, NA, Some doubly exponential sequences, Fibonacci Q., 11, 429-437 (1973) · Zbl 0277.10011
[2] Baker, A., Linear forms in the logarithms of algebraic numbers. I, Mathematika, 13, 204-216 (1966) · Zbl 0161.05201 · doi:10.1112/S0025579300003971
[3] Corvaja, P.; Hančl, J., A transcendence criterion for infinite products, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 18, 295-303 (2007) · Zbl 1207.11075 · doi:10.4171/RLM/496
[4] Corvaja, P.; Zannier, U., On the rational approximations to the powers of an algebraic number: solution of two problems of Mahler and Mendés France, Acta Math., 193, 175-191 (2004) · Zbl 1175.11036 · doi:10.1007/BF02392563
[5] Dubickas, A., On the powers of some transcendental numbers, Bull. Austral. Math. Soc., 76, 433-440 (2007) · Zbl 1146.11039 · doi:10.1017/S0004972700039782
[6] Finch, S., Mathematical Constants, Encyclopedia of Mathematics and Its Applications 94 (2003), Cambridge: CUP, Cambridge · Zbl 1054.00001
[7] Hančl, J.; Nair, R., On the irrationality of infinite series of reciprocals of square roots, Rocky Mt. J. Math., 47, 1525-1538 (2017) · Zbl 1382.11046 · doi:10.1216/RMJ-2017-47-5-1525
[8] Kulkarni, A.; Mavraki, NM; Nguyen, KD, Algebraic approximations to linear combinations of powers: an extension of results by Mahler and Corvaja-Zannier, Trans. Am. Math. Soc., 371, 3787-3804 (2019) · Zbl 1426.11069 · doi:10.1090/tran/7316
[9] Lehmer, DH, A cotangent analogue of continued fractions, Duke Math. J., 4, 323-340 (1935) · Zbl 0019.00901
[10] Mahler, K., On the fractional parts of the powers of a rational number. II, Mathematika, 4, 122-124 (1957) · Zbl 0208.31002 · doi:10.1112/S0025579300001170
[11] Mignotte, M., Sur les conjugées des nombres de Pisot, C. R. Acad. Sci. Paris Sér. I Math., 298, 21 (1984) · Zbl 0562.12001
[12] Schlickewei, HP, On the fractional parts of the sum of powers of rational numbers, Mathematika, 22, 154-155 (1975) · Zbl 0315.10032 · doi:10.1112/S0025579300006008
[13] Smyth, C., The conjugates of algebraic integers, Am. Math. Mon., 82, 86 (1975) · doi:10.2307/2319148
[14] The On-Line Encyclopedia of Integer Sequences. http://oeis.org · Zbl 1044.11108
[15] Wagner, S., Ziegler, V.: Irrationality of growth constants associated with polynomial recursions. J. Integer Seq. 24, Art. 21.1.6, 9 pp. (2021) · Zbl 1458.11114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.