×

Krylov and steady-state techniques for the solution of the chemical master equation for the mitogen-activated protein kinase cascade. (English) Zbl 1165.92019

Summary: Models of chemical kinetics in which some reactions are much faster than others are often treated by a type of quasi-steady-state approximation (QSSA). The total QSSA (tQSSA) was introduced for models of Michaelis-Menten enzyme kinetics and shown to be valid over a wider parameter regime than the usual QSSA. We extend the tQSSA to the Mitogen-Activated Protein Kinase Cascade, an important signaling system in cell biochemistry. These approximations were first developed in a deterministic setting, but here we also describe how to incorporate this approximation into the discrete and stochastic framework of the Chemical Master Equation (CME). The CME gives rise to a large-scale matrix exponential that can be solved by Krylov methods in combination with operator splitting and the tQSSA.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
65C30 Numerical solutions to stochastic differential and integral equations

Software:

Expokit
Full Text: DOI

References:

[1] Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149(4), 1633–1648 (Aug 1998)
[2] Blake, W.J., Kaern, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422(6932), 633–637 (Apr 2003) · doi:10.1038/nature01546
[3] Booth, B., Zemmel, R.: Prospects for productivity. Nat. Rev. Drug Discov. 3(5), 451–456 (May 2004) · doi:10.1038/nrd1384
[4] Borghans, J.A., de Boer, R.J., Segel, L.A.: Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58(1), 43–63 (Jan 1996) · Zbl 0866.92010 · doi:10.1007/BF02458281
[5] Brent, R.P.: Reducing the retrieval time of scatter storage techniques. Commun. ACM 16(2), 105–109 (February 1973) · Zbl 0251.68019 · doi:10.1145/361952.361964
[6] Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925)
[7] Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations. Oxford University Press, Oxford (1995) · Zbl 0838.65073
[8] Burrage, K., Hegland, M., MacNamara, S., Sidje, R.B.: A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems. In: Langville, A.N., Stewart, W.J. (eds.) 150th Markov Anniversary Meeting, Charleston, SC, USA, pp. 21–38. Boson Books, Raleigh (2006)
[9] Burrage, K., Tian, T., Burrage, P.: A multi-scaled approach for simulating chemical reaction systems. Prog. Biophys. Mol. Biol. 85(2–3), 217–234 (2004) · Zbl 1048.65004 · doi:10.1016/j.pbiomolbio.2004.01.014
[10] Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122, 014116–1–18 (2005)
[11] Chan, R.H.: Iterative methods for overflow queueing models I and II. Numer. Math. 51(2), 143–180 (1987) · Zbl 0586.65097 · doi:10.1007/BF01396747
[12] Ciliberto, A., Capuani, F., Tyson, J.J.: Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol. 3(3), e45 (Mar 2007) · doi:10.1371/journal.pcbi.0030045
[13] Dahlquist, G., Björk, Å.: Numerical Methods. Prentice-Hall, New York (1974)
[14] Liu, W.E.D., Vanden-Eijnden, E.: Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J. Chem. Phys. 123(19), 194107 (Nov 2005) · doi:10.1063/1.2109987
[15] Ehrenberg, M., Elf, J., Aurell, E., Sandberg, R., Tegnér, J.: Systems biology is taking off. Genome Res. 13(11), 2377–2380 (Nov 2003) · doi:10.1101/gr.1763203
[16] Elowitz, M.B., Surette, M.G., Wolf, P.E., Stock, J.B., Leibler, S.: Protein mobility in the cytoplasm of escherichia coli. J. Bacteriol. 181(1), 197–203 (January 1999)
[17] Fedoroff, N., Fontana, W.: Small numbers of big molecules. Science 297(5584), 1129–1131 (August 2002) · doi:10.1126/science.1075988
[18] Gillespie, D.: Markov Processes: An Introduction for Physical Scientists. Academic, London (1992) · Zbl 0743.60001
[19] Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977) · doi:10.1021/j100540a008
[20] Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001) · doi:10.1063/1.1378322
[21] Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 2, 205–224 (1965) · Zbl 0194.18201 · doi:10.1137/0702016
[22] Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins, Baltimore (1996) · Zbl 0865.65009
[23] Golub, G.H., Vanderstraeten, D.: On the preconditioning of matrices with skew-symmetric splittings. Numer. Algorithm 25, 223–239 (2000) · Zbl 0983.65041 · doi:10.1023/A:1016637813615
[24] Hegland, M., Burden, C., Santoso, L., MacNamara, S., Booth, H.: A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math. 205(2), 708–724 (2006) (Special issue on evolutionary problems) · Zbl 1121.65009 · doi:10.1016/j.cam.2006.02.053
[25] Henri, V.: Ueber das gesetz der wirkung des invertins. Z. Phys. Chem. 39, 194–216 (1901)
[26] Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991) · Zbl 0729.15001
[27] Huang, C.Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. U. S. A. 93(19), 10078–10083 (Sep 1996) · doi:10.1073/pnas.93.19.10078
[28] Hutchison, C.A.: DNA sequencing: bench to bedside and beyond. Nucleic Acids Res. 35(18), 6227–6237 (2007) · doi:10.1093/nar/gkm688
[29] Kamvar, S., Haveliwala, T., Manning, C., Golub, G.: Exploiting the block structure of the web for computing pagerank. Technical report, Stanford University (2003)
[30] Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: the Science of Search Engine Rankings. Princeton University Press, London (2006) · Zbl 1104.68042
[31] Lodish, H., Berk, A., Zipursky, L.S., Matsudaira, P., Baltimore, D., Darnell, J.: Molecular Cell Biology. W.H. Freeman, San Francisco (2008)
[32] MacNamara, S., Bersani, A.M., Burrage, K., Sidje, R.B.: Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. J. Chem. Phys. 129, 95–105 (2008)
[33] MacNamara, S., Burrage, K., Sidje, R.B.: An improved finite state projection algorithm for the numerical solution of the chemical master equation with applications. In: Read, W., Roberts, A.J. (eds.) Proceedings of the 13th Biennial Computational Techniques and Applications Conference, CTAC-2006, vol. 48 of ANZIAM J., pp. C413–C435. James Cook University, Townsville (October 2007) · Zbl 1334.92475
[34] MacNamara, S., Burrage, K., Sidje, R.B.: Multiscale modeling of chemical kinetics via the master equation. Multiscale Model. Simul. 6(4), 1146–1168 (2008) · Zbl 1153.60370 · doi:10.1137/060678154
[35] Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (2000) · Zbl 0962.15001
[36] Michaelis, L., Menten, M.L.: Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369 (1913)
[37] Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801–836 (1978) · Zbl 0395.65012 · doi:10.1137/1020098
[38] Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, 25 years later. SIAM Rev. 45(1), 3–49 (2003) · Zbl 1030.65029 · doi:10.1137/S00361445024180
[39] Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104 (2006) · Zbl 1131.82020 · doi:10.1063/1.2145882
[40] Nicolau, Jr. D.V., Burrage, K., Parton, R.G., Hancock, J.F.: Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol. Cell Biol. 26(1), 313–323 (2006) · doi:10.1128/MCB.26.1.313-323.2006
[41] Ortega, J.M., Rheinbolt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, London (1970)
[42] Pedersen, M.G., Bersani, A.M., Bersani, E.: The total quasi-steady-state approximation for fully competitive enzyme reactions. Bull. Math. Biol. 69(1), 433–457 (Jan 2007) · Zbl 1133.92323 · doi:10.1007/s11538-006-9136-2
[43] Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118, 4999–5010 (2003) · doi:10.1063/1.1545446
[44] Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119, 12784–12794 (December 2003) · doi:10.1063/1.1627296
[45] Rubinow, S.I., Lebowitz, J.L.: Time-dependent Michaelis-Menten kinetics for an enzyme-substrate-inhibitor system. J. Am. Chem. Soc. 92, 3888–3893 (1970) · doi:10.1021/ja00716a009
[46] Saad, Y.: Analysis of some krylov subspace approximaitons to the matrix exponential operator. Siam J. Numer. Anal. 29(1), 209–228 (February 1992) · Zbl 0749.65030 · doi:10.1137/0729014
[47] Schnell, S., Maini, P.K.: A century of enzyme kinetics: Reliability of the k m and v max estimates. Comments Theor. Biol. 8, 169–187 (2003) · doi:10.1080/08948550302453
[48] Segel, L.A., Slemrod, M.: The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31(3), 446–447 (1989) · Zbl 0679.34066 · doi:10.1137/1031091
[49] Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998) · Zbl 0917.65063 · doi:10.1145/285861.285868
[50] Sidje, R.B.: Parallel algorithms for large sparse matrix exponentials: application to numerical transient analysis of Markov processes. PhD thesis, University of Rennes (1994)
[51] Sidje, R.B., Stewart, W.J.: A numerical study of large sparse matrix exponentials arising in Markov chains. Comput. Stat. Data Anal. 29, 345–368 (1999) · Zbl 1042.65508 · doi:10.1016/S0167-9473(98)00062-0
[52] Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994) · Zbl 0821.65099
[53] Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(2), 506–517 (1968) · Zbl 0184.38503 · doi:10.1137/0705041
[54] Strang, G.: Linear Algebra and Its Applications. Thomson, Brooks/Cole, Belmont (2006) · Zbl 0338.15001
[55] Straus, O.H., Goldstein, A.: Zone behaviour of enzymes. J. Gen. Physiol. 26, 559–585 (1943) · doi:10.1085/jgp.26.6.559
[56] Tian, T., Burrage, K.: Binomial leap methods for simulating stochastic chemical kinetics. J. Chem. Phys. 121(21), 10356–10364 (2004) · doi:10.1063/1.1810475
[57] Tzafriri, A.R.: Michaelis-menten kinetics at high enzyme concentrations. Bull. Math. Biol. 65(6), 1111–1129 (Nov 2003) · Zbl 1334.92185 · doi:10.1016/S0092-8240(03)00059-4
[58] van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier Science, Amsterdam (2001) · Zbl 0974.60020
[59] Voet, D., Voet, J.G.: Biochemistry. Wiley, New York (2004)
[60] Wolinsky, H.: The thousand-dollar genome. Genetic brinkmanship or personalized medicine? EMBO Rep. 8(10), 900–903 (Oct 2007) · doi:10.1038/sj.embor.7401070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.