×

Fluid dynamics and oxygen transport in a micro-bioreactor with a tissue engineering scaffold. (English) Zbl 1156.76448

Summary: The flow environment in the micro-bioreactor with a tissue engineering scaffold was numerically modeled. The finite volume method based on multi-block grid was applied to simulate the coupled flow and oxygen transport in both porous medium and homogeneous fluid regions. At porous-fluid interface, a stress jump condition that includes both viscous and inertial effects was imposed. A parametric study was performed to investigate the effects of Reynolds, Darcy, and Damkohler numbers on the flow and oxygen concentration fields inside and outside the scaffold. The minimum oxygen concentration in the scaffold and its location under different conditions were summarized.

MSC:

76S05 Flows in porous media; filtration; seepage
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
76T10 Liquid-gas two-phase flows, bubbly flows
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Carrier, R. L.; Papadaki, M.; Rupnick, M.; Schoen, F. J.; Bursac, N.; Langer, R.; Freed, L. E.; Vunjak-Novakovic, G.: Cardiac tissue engineering: cell seeding, cultivation parameters and tissue construct characterization, Biotechnol. bioeng. 64, 580-589 (1999)
[2] Cooper, J. A.; Lu, H. H.; Ko, F. K.; Freeman, J. W.; Laurencin, C. T.: Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation, Biomaterials 26, 1523-1532 (2005)
[3] Goldstein, A. S.; Juarez, T. M.; Helmke, C. D.; Gustin, M. C.; Mikos, A. G.: Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds, Biomaterials 22, 1279-1288 (2001)
[4] Koh, C. J.; Atala, A.; Engineering, Tissue; Cells, Stem: And cloning: opportunities for regenerative medicine, J. am. Soc. nephrol. 15, 1113-1125 (2004)
[5] Vunjak-Novakovic, G.; Obradovic, B.; Martin, I.; Bursac, P. M.; Langer, R.; Freed, L. E.: Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering, Biotechnol. prog. 14, 193-202 (1998)
[6] Freed, L. E.; Vunjak-Novakovic, G.; Biron, R. J.; Eagles, D. B.; Lesnoy, D. C.; Barlow, S. K.; Langer, R.: Biodegradable polymer scaffolds for tissue engineering, Biotechnology 12, 689-693 (1994)
[7] Dusting, J.; Sheridan, J.; Hourigan, K.: A fluid dynamic approach to bioreactor design for cell and tissue culture, Biotechnol. bioeng. 94, 1197-1208 (2006)
[8] Williams, K. A.; Saini, S.; Wick, T. M.: Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering, Biotechnol. prog. 18, 951-963 (2002)
[9] Porter, B.; Zauel, P.; Stockman, H.; Guldberg, R.; Fyhrie, D.: 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor, J. biomech. 38, 543-549 (2005)
[10] Boschetti, F.; Raimondi, M. T.; Migliavacca, F.; Dubini, G.: Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors, J. biomech. 39, 418-425 (2006)
[11] Sucosky, P.; Osorio, F. F.; Brown, J. B.; Neitzel, G. P.: Fluid mechanics of a spinner-flask bioreactor, Biotechnol. bioeng. 85, 34-46 (2004)
[12] Costa, V. A. F.; Oliveira, L. A.; Baliga, B. R.; Sousa, A. C. M.: Simulation of coupled flows in adjacent porous and open domains using a control-volume finite-element method, Numer. heat tr. A-appl. 45, 675-697 (2004)
[13] Betchen, L.; Straatman, A. G.; Thompson, B. E.: A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains, Numer. heat tr. A-appl. 49, 543-565 (2006)
[14] Ochoa-Tapia, J. A.; Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid I: Theoretical development, Int. J. Heat mass transfer 38, 2635-2646 (1995) · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00346-W
[15] Ochoa-Tapia, J. A.; Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid II: Comparison with experiment, Int. J. Heat mass transfer 38, 2647-2655 (1995) · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00346-W
[16] Silva, R. A.; De Lemos, M. J. S.: Numerical analysis of the stress jump interface condition for laminar flow over a porous layer, Numer. heat tr. A-appl. 43, 603-617 (2003)
[17] Yu, P.; Lee, T. S.; Zeng, Y.; Low, H. T.: A numerical method for flows in porous and open domains coupled at the interface by stress jump, Int. J. Numer. meth. Fl. 53, 1755-1775 (2007) · Zbl 1370.76110
[18] Ochoa-Tapia, J. A.; Whitaker, S.: Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effect, J. porous media 1, 201-217 (1998) · Zbl 0931.76094
[19] P. Yu, A Numerical study of swirling flow and oxygen transport in a micro-biorector, Ph.D. Thesis, National University of Singapore, Singapore, 2006.
[20] Yu, P.; Lee, T. S.; Zeng, Y.; Low, H. T.: Effect of vortex breakdown on mass transfer in a cell culture bioreactor, Mod. phys. Lett. B 19, 543-1546 (2005) · Zbl 1137.76838 · doi:10.1142/S0217984905009869
[21] Gugala, Z.; Gogolewski, S.: The in vitro growth and activity of sleep osteoblasts on three-dimensional scaffolds from poly (l/dl-lactide) 80/20%, J. biomed. Mater. res. A 75, 702-709 (2005)
[22] Li, S. H.; De Wijn, J. R.; Li, J. P.; Layrolle, P.; De Groot, K.: Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio, Tissue eng. 9, 535-548 (2003)
[23] Wang, S.; Model, J. M. Tarbell Effect Of Fluid Flow On Smooth Muscle Cells In A. 3-Dimensional Collagen Gel: Arterioscler. thromb. Vasc. biol., Arterioscler. thromb. Vasc. biol. 20, 2220-2225 (2000)
[24] Agrawal, C. M.; Mckinney, J. S.; Lanctot, D.; Athanasiou, K. A.: Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering, Biomaterials 21, 2443-2452 (2000)
[25] Galban, C. J.; Locke, B. R.: Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold, Biotechnol. bioeng. 65, 121-132 (1999)
[26] Lasseux, D.; Ahmadi, A.; Cleis, X.; Garnier, J.: A macroscopic model for species transport during in vitro tissue growth obtained by the volume averaging method, Chem. eng. Sci. 59, 1949-1964 (2004)
[27] Wood, B. D.; Whitaker, S.: Multi-species diffusion and reaction in biofilms and cellular media, Chem. eng. Sci. 55, 3397-3418 (2000)
[28] Wood, B. D.; Quintard, M.; Whitaker, S.: Calculation of effective diffusivities for biofilms and tissues, Biotechnol. bioeng. 77, 495-516 (2002)
[29] Chang, H. C.: Effective diffusion and conduction in two-phase media: a unified approach, Aiche J. 29, 846-853 (1983)
[30] Alazmi, B.; Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer, Int. J. Heat mass transfer 44, 1735-1749 (2001) · Zbl 1091.76567 · doi:10.1016/S0017-9310(00)00217-9
[31] Valencia-López, J. J.; Espinosa-Paredes, G.; Ochoa-Tapia, J. A.: Mass transfer jump condition at the boundary between a porous medium and a homogeneous fluid, J. porous media 6, 33-49 (2003) · Zbl 1152.76482 · doi:10.1615/JPorMedia.v6.i1.20
[32] Lilek, Ž.; Muzaferija, S.; Perić, M.; Seidl, V.: An implicit finite-volume method using nonmatching blocks of structured grid, Numer. heat tr. B-fund. 32, 385-401 (1997)
[33] Yu, P.; Lee, T. S.; Zeng, Y.; Low, H. T.: Effects of conical lids on vortex breakdown in an enclosed cylindrical chamber, Phys. fluids 18, 117101 (2006) · Zbl 1146.76579 · doi:10.1063/1.2387107
[34] Yu, P.; Lee, T. S.; Zeng, Y.; Low, H. T.: Characterization of flow behavior in an enclosed cylinder with a partially rotating end-wall, Phys. fluids 19, 057104 (2007) · Zbl 1146.76578 · doi:10.1063/1.2731420
[35] Spohn, A.; Mory, M.; Hopfinger, E. J.: Observation of vortex breakdown in an open cylindrical container with a rotating bottom, Exp. fluids 14, 70-77 (1993)
[36] Lin, A. A.; Miller, W. M.: CHO cell responses to low oxygen: regulation of oxygen consumption and sensitization to oxidative stress, Biotechnol. bioeng. 40, 505-516 (1992)
[37] Meuwly, F.; Loviat, F.; Ruffieux, P. A.; Bernard, A. R.; Kadouri, A.; Von Stockar, U.: Oxygen supply for CHO cells immobilized on a packed-bed of fibra-cel\(\textregistered \) disks, Biotechnol. bioeng. 93, 791-800 (2006)
[38] Zeng, Y.; Lee, T. S.; Yu, P.; Roy, P.; Low, H. T.: Mass transport and shear stress in a microchannel bioreactor: numerical simulation and dynamic similarity, ASME J. Biomech. eng. 128, 185-193 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.