×

The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: A computational study. (English) Zbl 1402.92084

Summary: Experimental evidences point out the participation of nonsynaptic mechanisms (e.g., fluctuations in extracellular ions) in epileptiform bursting and spreading depression (SD). During these abnormal oscillatory patterns, it is observed an increase of extracellular potassium concentration \([\mathrm K^+]_{\mathrm o}\) and a decrease of extracellular calcium concentration \([\mathrm{Ca}^{2+}]_{\mathrm o}\) which raises the neuronal excitability. However, whether the high \([\mathrm K^+]_{\mathrm o}\) triggers and propagates these abnormal neuronal activities or plays a secondary role into this process is unclear. To better understand the influence of extracellular potassium dynamics in these oscillatory patterns, the experimental conditions of high \([\mathrm K^+]_{\mathrm o}\) and zero \([\mathrm{Ca}^{2+}]_{\mathrm o}\) were replicated in an extended Golomb model where we added important regulatory mechanisms of ion concentration as \(\mathrm{Na}^+\)-\(\mathrm K^+\) pump, ion diffusion and glial buffering. Within these conditions, simulations of the cell model exhibit seizure-like discharges (ictal bursting). The SD was elicited by the interruption of the \(\mathrm{Na}^+\)-\(\mathrm K^+\) pump activity, mimicking the effect of cellular hypoxia (an experimental protocol to elicit SD, the hypoxia-induced SD). We used the bifurcation theory and the fast-slow method to analyze the interference of \(\mathrm K^+\) dynamics in the cellular excitability. This analysis indicates that the system loses its stability at a high \([\mathrm K^+]_{\mathrm o}\), transiting to an elevated state of neuronal excitability. Effects of high \([\mathrm K^+]_{\mathrm o}\) are observed in different stages of ictal bursting and SD. In the initial stage, the increase of \([\mathrm K^+]_{\mathrm o}\) creates favorable conditions to trigger both oscillatory patterns. During the neuronal activity, a continuous growth of \([\mathrm K^+]_{\mathrm o}\) by outward \(\mathrm K^+\) flow depresses \(\mathrm K^+\) currents in a positive feedback way. At the last stage, due to the depression of \(\mathrm K^+\) currents, the \(\mathrm{Na}^+\)-\(\mathrm K^+\) pump is the main mechanism in the end of neuronal activity. Thus, this work suggests that \([\mathrm K^+]_{\mathrm o}\) dynamics may play a fundamental role in these abnormal oscillatory patterns.

MSC:

92C20 Neural biology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

Software:

XPPAUT
Full Text: DOI

References:

[1] Aguggia, M.; D’Andrea, G.; Bussone, G., Neurophysiology and neuromodulators, Neurol. Sci., 28, S97-S100, (2007)
[2] Almeida, A. C.G.; Rodrigues, A. M.; Scorza, F. A.; Cavalheiro, E. A.; Teixeira, H. Z.; Duarte, M. A.; Silveira, G. A.; Arruda, E. Z., Mechanistic hypotheses for nonsynaptic epileptiform activity induction and its transition from the interictal to ictal state-computational simulation, Epilepsia, 49, 1908-1924, (2008)
[3] Amzica, F.; Massimini, M.; Manfridi, A., Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo, J. Neurosci., 22, 1042-1053, (2002)
[4] Bazhenov, M.; Timofeev, I.; Steriade, M.; Sejnowski, T. J., Potassium model for slow (2-3hz) in vivo neocortical paroxysmal oscillations, J. Neurophysiol., 92, 1116-1132, (2004)
[5] Benarroch, E. E., Neuron – astrocyte interactions: partnership for normal function and disease in the central nervous system, Mayo Clin. Proc., 80, 1326-1338, (2005)
[6] Bertram, R.; Butte, M. J.; Kiemel, T.; Sherman, A., Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57, 413-439, (1995) · Zbl 0813.92010
[7] Bikson, M.; Ghai, R. S.; Baraban, S. C.; Durand, D. M., Modulation of burst frequency, duration, and amplitude in the zero-ca^{2+} model of epileptiform activity, J. Neurophysiol., 82, 2262-2270, (1999)
[8] Borck, C.; Jefferys, J. G.R., Seizure-like events in disinhibited ventral slices of adult rat hippocampus, J. Neurophysiol., 82, 2130-2142, (1999)
[9] Cohen, J. E.; Fields, R. D., Extracellular calcium depletion in synaptic transmission, Neuroscientist, 10, 12-17, (2004)
[10] Dahlem, M. A.; Chroniclec, E. P., A computational perspective on migraine aura, Prog. Neurobiol., 74, 351-361, (2004)
[11] D’Ambrosio, R., The role of glial membrane ion channels in seizures and epileptogenesis, Pharmacol. Ther., 103, 95-108, (2004)
[12] D’Ambrosio, R.; Gordon, D. S.; Winn, H. R., Differential role of KIR channel and na^{+}/K^{+}-pump in the regulation of extracellular K^{+} in rat hippocampus, J. Neurophysiol., 87, 87-102, (2002)
[13] Dichter, M. A.; Herman, C. J.; Selzer, M., Silent cells during interictal discharges and seizures in hippocampal penicillin foci. evidence for the role of extracellular K^{+} in the transition from the interictal state to seizures, Brain Res., 48, 173-183, (1972)
[14] Ermentrout, G.B., 2002. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to Xppaut for Researchers and Students (Software, Environment, Tools). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. · Zbl 1003.68738
[15] Feldberg, W.; Sherwood, S. L., Effects of calcium and potassium injected into the cerebral ventricles of the cat, J. Physiol., 139, 408-416, (1957)
[16] Feng, Z.; Durand, D. M., Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: inducing of persistent spike activity, Epilepsia, 47, 727-736, (2006)
[17] Fertziger, A. P.; Ranck, J. B., Potassium accumulation in interstitial space during epileptiform seizures, Exp. Neurol., 26, 571-585, (1970)
[18] Fisher, R. S.; Pedley, T. A.; Prince, D. A., Kinetics of potassium movement in normal cortex, Brain Res., 101, 223-237, (1976)
[19] Frankenhaeuser, B.; Hodgkin, A. L., The after-effects of impulses in the giant nerve fibers of loligo, J. Physiol., 131, 341-376, (1956)
[20] Fröhlich, F.; Bazhenov, M., Coexistence of tonic firing and bursting in cortical neurons, Phys. Rev. E, 74, 031922, (2006)
[21] Fröhlich, F.; Bazhenov, M.; Timofeev, I.; Steriade, M.; Sejnowski, T. J., Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability, J. Neurosci., 26, 6153-6162, (2006)
[22] Golomb, D.; Yue, C.; Yaari, Y., Contribution of persistent na^{+} current and M-type K^{+} current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study, J. Neurophysiol., 96, 1912-1926, (2006)
[23] Gorji, A., Spreading depression: a review of the clinical relevance, Brain Res., 38, 33-60, (2001)
[24] Grafstein, B., Mechanism of spreading cortical depression, J. Neurophysiol., 19, 154-171, (1956)
[25] Green, J. D., The hippocampus, Physiol. Rev., 44, 561-608, (1964)
[26] Haglund, M. M.; Schwartzkroin, P. A., Role of na-K pump potassium regulation and ipsps in seizures and spreading depression in immature rabbit hippocampal slices, J. Neurophysiol., 63, 225-239, (1990)
[27] Heinemann, U.; Konnereth, A.; Pumain, R.; Wadman, W., Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue, J. Adv. Neurol., 44, 641-661, (1986)
[28] Heinemann, U.; Lux, H. D.; Gutnick, M. J., Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat, Exp. Brain Res., 27, 237-243, (1977)
[29] Herreras, O.; Somjen, G. G., Analysis of potential shifts associated with recurrent spreading depression and prolonged unstable spreading depression induced by microdialysis of elevated K^{+} in hippocampus of anesthetized rats, Brain Res., 610, 283-294, (1993)
[30] Herreras, O.; Somjen, G. G.; Strong, A., Electrical prodromals of spreading depression void Grafstein’s potassium hypothesis, J. Neurophysiol., 94, 3656-3657, (2005)
[31] Hoppensteadt, F. C.; Izhikevich, E. M., Weakly connected neural networks, (1997), Springer New York · Zbl 0887.92003
[32] Izhikevich, E. M., Dynamical systems in neuroscience: the geometry of excitability and bursting, (2007), MIT Press Cambridge, MA
[33] Jensen, M. S.; Yaari, Y., Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy, J. Neurophysiol., 77, 1224-1233, (1997)
[34] Jensen, M. S.; Yaari, Y., The relationship between interictal and ictal paroxysms in an in vitro model of focal hippocampal epilepsy, Ann. Neurol., 24, 591-598, (1988)
[35] Kager, H.; Wadman, W. J.; Somjen, G. G., Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations, J. Neurophysiol., 84, 495-512, (2000)
[36] Kager, H.; Wadman, W. J.; Somjen, G. G., Seizure-like afterdischarges simulated in a model neuron, J. Comput. Neurosci., 22, 105-128, (2007)
[37] Kandel, E. R.; Schwartz, J. H.; Jessel, T. M., Principles of neural science, (2000), McGraw-Hill New York, pp. 912-935
[38] Konnerth, A.; Heinemann, U.; Yaari, Y., Slow transmission of neural activity in hippocampal area CA1 in absence of active chemical synapses, Nature, 307, 69-71, (1984)
[39] Korn, S. J.; Giacchino, J. L.; Chamberlin, N. L.; Dingledine, R., Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition, J. Neurophysiol., 57, 325-340, (1987)
[40] Leão, A. A.P., Spreading depression of activity in the cerebral cortex, J. Neurophysiol., 7, 359-390, (1944)
[41] Leschinger, A.; Stabel, J.; Igelmund, P.; Heinemann, U., Pharmacological and electrographic properties of epileptiform activity induced by elevated K^{+} and lowered ca^{2+} and mg^{2+} concentration in rat hippocampal slices, Exp. Brain Res., 96, 230-240, (1993)
[42] Lian, J.; Bikson, M.; Shuai, J.; Durand, D. M., Propagation of nonsynaptic epileptiform activity across lesion in rat hippocampal slices, J. Physiol., 537, 191-199, (2001)
[43] Lux, H. D., The kinetics of extracellular potassium relation to epileptogenesis, Epilepsia, 15, 375-393, (1974)
[44] Martins-Ferreira, H.; Nedergaard, M.; Nicholson, C., Brain Res. Rev., 32, 215-234, (2000)
[45] McCormick, D. A.; Contreras, D., On the cellular and network bases of epileptic seizures, Annu. Rev. Physiol., 63, 815-846, (2001)
[46] Moody, W. J.; Futamachi, K. J.; Prince, D. A., Extracellular potassium during epileptogenesis, Exp. Neurol., 42, 248-263, (1974)
[47] Müller, M.; Somjen, G. G., Na^{+} and K^{+} concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices, J. Neurophysiol., 83, 735-745, (2000)
[48] Nicholson, C., Modulation of extracellular calcium and its functional implications, Fed. Proc., 39, 1519-1523, (1980)
[49] Pan, E.; Stringer, J. L., Role of potassium and calcium in the generation of cellular bursts in the dentate gyrus, J. Neurophysiol., 77, 2293-2299, (1997)
[50] Park, E. H.; Durand, D. M., Role of potassium lateral diffusion in non-synaptic epilepsy: a computational study, J. Theor. Biol., 238, 666-682, (2006) · Zbl 1445.92081
[51] Pumain, R.; Menini, C.; Heinemann, U.; Louvel, J.; Silva-Barrat, C., Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon papio papio, Exp. Neurol., 89, 250-258, (1985)
[52] Somjen, G. G., Extracellular potassium in the Mammalian central nervous system, Annu. Rev. Physiol., 41, 159-177, (1979)
[53] Somjen, G. G., Mechanisms of spreading depression and hypoxic spreading depression-like depolarization, Physiol. Rev., 81, 1065-1096, (2001)
[54] Somjen, G. G., Ion regulation in the brain: implications for pathophysiology, Neuroscientist, 8, 254-267, (2002)
[55] Somjen, G. G.; Aitken, P. G.; Czéh, G. L.; Herreras, O.; Jing, J.; Young, J. N., Mechanisms of spreading depression: a review of recent findings and a hypothesis, Can. J. Physiol. Pharmacol., 70, Suppl. S, 248-254, (1992)
[56] Somjen, G. G.; Aitken, P. G.; Giacchino, J. L.; McNamara, J. O., Sustained potential shifts and paroxysmal discharges in hippocampal formation, J. Neurophysiol., 53, 1079-1097, (1985)
[57] Takano, T.; Tian, G. F.; Peng, W.; Lou, N.; Lovatt, D.; Hansen, A. J.; Kasischke, K. A.; Nedergaard, M., Cortical spreading depression causes and coincides with tissue hypoxia, Nat. Neurosci., 10, 754-762, (2007)
[58] Teixeira, H.Z., Almeida, A.C.G., Infantosi, A.F.C., Rodrigues, A.M., Costa, N.L., Duarte, M.A., 2008. Identifying essential conditions for refractoriness of Leão’s spreading depression-Computational modelling. Comp. Bio. Chemist., V.x, P.x-xx.doi:10.1016/j.compbiolchem.2008.03.011. · Zbl 1161.92015
[59] Traynelis, S. F.; Dingledine, R., Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice, J. Neurophysiol., 59, 259-276, (1988)
[60] Welch, K. M., Brain hyperexcitability: the basis for antiepileptic drugs in migraine prevention, Headache, 45, Suppl. 1, S25-S32, (2005)
[61] Xiong, Z. Q.; Stringer, J. L., Prolonged bursts occur in normal calcium in hippocampal slices after raising excitability and blocking synaptic transmission, J. Neurophysiol., 86, 2625-2628, (2001)
[62] Zuckermann, E. C.; Glaser, G. H., Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid, Exp. Neurol., 20, 87-110, (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.