×

SVD perspectives for augmenting DeepONet flexibility and interpretability. (English) Zbl 1536.68020

Summary: Deep operator networks (DeepONets) are powerful and flexible architectures that are attracting attention in multiple fields due to their utility for fast and accurate emulation of complex dynamics. As their remarkable generalization capabilities are primarily enabled by their projection-based attribute, in this paper, we investigate connections with low-rank techniques derived from the singular value decomposition (SVD). We demonstrate that some of the concepts behind proper orthogonal decomposition (POD)-neural networks can improve DeepONet’s design and training phases. These ideas lead us to a methodology extension that we name SVD-DeepONet. Moreover, through multiple SVD analyses of scenario- and time-aggregated snapshots matrices, we find that DeepONet inherits from its projection-based attribute strong inefficiencies in representing dynamics characterized by symmetries. Inspired by the work on shifted-POD, we develop flexDeepONet, an architecture enhancement that relies on a pre-transformation network for generating a moving reference frame and isolating the rigid components of the dynamics. In this way, the physics can be represented on a latent space free from rotations, translations, and stretches, and an accurate projection can be performed to a low-dimensional basis. In addition to improving DeepONet’s flexibility and interpretability, the proposed perspectives increase its generalization capabilities and computational efficiencies. For instance, we show flexDeepONet can accurately surrogate the dynamics of 19 thermodynamic variables in a combustion chemistry application by relying on 95% fewer trainable parameters than that of the ‘vanilla’ architecture. As stressed in the paper, we argue that DeepONet and SVD-based methods can reciprocally benefit from each other. In particular, the flexibility of the former in leveraging multiple data sources and multifidelity knowledge in the form of both unstructured data and physics-informed constraints has the potential to greatly extend the applicability of methodologies such as POD and principal component analysis (PCA).

MSC:

68T05 Learning and adaptive systems in artificial intelligence
68T07 Artificial neural networks and deep learning

References:

[1] Brunton, S. L.; Noack, B. R.; Koumoutsakos, P., Machine learning for fluid mechanics, Annu. Rev. Fluid Mech., 52, 1, 477-508 (2020) · Zbl 1439.76138
[2] Qian, E.; Kramer, B.; Peherstorfer, B.; Willcox, K., Lift & learn: Physics-informed machine learning for large-scale nonlinear dynamical systems, Physica D, 406, Article 132401 pp. (2020) · Zbl 1493.62512
[3] Kim, Y.; Choi, Y.; Widemann, D. P.; Zohdi, T., A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder, J. Comput. Phys., 451, Article 110841 pp. (2022) · Zbl 07517153
[4] Lauzon, J. T.; Cheung, S. W.; Shin, Y.; Choi, Y.; Copeland, D. M.; Huynh, K., S-OPT: A Points Selection Algorithm for Hyper-Reduction in Reduced Order Models (2022), arXiv
[5] Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, M., Deep learning and process understanding for data-driven earth system science, Nature, 566, 195 (2019)
[6] Raissi, M.; Perdikaris, P.; Karniadakis, G., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[7] Sirignano, J.; Spiliopoulos, K., DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375, 1339-1364 (2018) · Zbl 1416.65394
[8] Karniadakis, G.; Kevrekidis, Y.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L., Physics-informed machine learning, Nat. Rev. Phys., 3, 422-440 (2021)
[9] Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A., Neural operator: Graph kernel network for partial differential equations (2020), arXiv preprint arXiv:2003.03485
[10] Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A., Fourier neural operator for parametric partial differential equations (2020), arXiv preprint arXiv:2010.08895
[11] Kovachki, N.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhattacharya, K.; Stuart, A.; Anandkumar, A., Neural operator: Learning maps between function spaces (2021), arXiv preprint arXiv:2108.08481
[12] Chen, T.; Chen, H., Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems, IEEE Trans. Neural Netw., 6, 4, 911-917 (1995)
[13] Lu, L.; Jin, P.; Karniadakis, G. E., DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators (2019), http://dx.doi.org/10.1038/s42256-021-00302-5
[14] Lu, L.; Jin, P.; Pang, G.; Zhang, Z.; Karniadakis, G. E., Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nat. Mach. Intell., 3, 218-229 (2021)
[15] Bhattacharya, K.; Hosseini, B.; Kovachki, N. B.; Stuart, A. M., Model reduction and neural networks for parametric PDEs (2020), arXiv preprint arXiv:2005.03180
[16] Trask, N.; Patel, R. G.; Gross, B. J.; Atzberger, P. J., GMLS-Nets: A framework for learning from unstructured data (2019), arXiv preprint arXiv:1909.05371
[17] Gin, C.; Shea, D. E.; Brunton, S. L.; Kutz, J. N., DeepGreen: deep learning of Green’s functions for nonlinear boundary value problems, Sci. Rep., 11 (2021)
[18] Patel, R. G.; Trask, N. A.; Wood, M. A.; Cyr, E. C., A physics-informed operator regression framework for extracting data-driven continuum models, Comput. Methods Appl. Mech. Engrg., 373, Article 113500 pp. (2021) · Zbl 1506.62383
[19] You, H.; Yu, Y.; D’Elia, M.; Gao, T.; Silling, S., Nonlocal kernel network (NKN): a stable and resolution-independent deep neural network (2022), arXiv preprint arXiv:2201.02217
[20] Zhang, L.; You, H.; Yu, Y., MetaNOR: A meta-learnt nonlocal operator regression approach for metamaterial modeling (2022), http://dx.doi.org/10.48550/ARXIV.2206.02040
[21] Kissas, G.; Seidman, J.; Guilhoto, L. F.; Preciado, V. M.; Pappas, G. J.; Perdikaris, P., Learning operators with coupled attention (2022), arXiv preprint arXiv:2201.01032
[22] De, S.; Hassanaly, M.; Reynolds, M.; King, R. N.; Doostan, A., Bi-fidelity modeling of uncertain and partially unknown systems using DeepONets (2022), http://dx.doi.org/10.48550/ARXIV.2204.00997
[23] Howard, A. A.; Perego, M.; Karniadakis, G. E.; Stinis, P., Multifidelity deep operator networks (2022), http://dx.doi.org/10.48550/ARXIV.2204.09157
[24] Lu, L.; Pestourie, R.; Johnson, S. G.; Romano, G., Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport (2022), http://dx.doi.org/10.48550/ARXIV.2204.06684
[25] Lin, C.; Li, Z.; Lu, L.; Cai, S.; Maxey, M.; Karniadakis, G. E., Operator learning for predicting multiscale bubble growth dynamics, J. Chem. Phys., 154, 10, Article 104118 pp. (2021)
[26] Lin, C.; Maxey, M.; Li, Z.; Karniadakis, G. E., A seamless multiscale operator neural network for inferring bubble dynamics, J. Fluid Mech., 929, A18 (2021) · Zbl 1495.76119
[27] Cai, S.; Wang, Z.; Lu, L.; Zaki, T. A.; Karniadakis, G. E., DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks, J. Comput. Phys., 436, Article 110296 pp. (2021) · Zbl 07513856
[28] Di Leoni, P. C.; Lu, L.; Meneveau, C.; Karniadakis, G.; Zaki, T. A., Deeponet prediction of linear instability waves in high-speed boundary layers (2021), arXiv preprint arXiv:2105.08697
[29] Gitushi, K. M.; Ranade, R.; Echekki, T., Investigation of deep learning methods for efficient high-fidelity simulations in turbulent combustion, Combust. Flame, 236, Article 111814 pp. (2022)
[30] Mao, Z.; Lu, L.; Marxen, O.; Zaki, T. A.; Karniadakis, G. E., DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators, J. Comput. Phys., 447, Article 110698 pp. (2021) · Zbl 07516442
[31] M.P. Sharma, S. Venturi, M. Panesi, Application of DeepOnet to model inelastic scattering probabilities in air mixtures, in: AIAA AVIATION 2021 FORUM, http://dx.doi.org/10.2514/6.2021-3144.
[32] I. Zanardi, S. Venturi, M. Panesi, Towards Efficient Simulations of Non-Equilibrium Chemistry in Hypersonic Flows: A Physics-Informed Neural Network Framework, in: AIAA SCITECH 2022 Forum, http://dx.doi.org/10.2514/6.2022-1639.
[33] Osorio, J. D.; Wang, Z.; Karniadakis, G. E.; Cai, S.; Chryssostomidis, C.; Panwar, M.; Hovsapian, R., Forecasting solar-thermal systems performance under transient operation using a data-driven machine learning approach based on the deep operator network architecture, Energy Convers. Manage., 252, Article 115063 pp. (2022)
[34] Goswami, S.; Yin, M.; Yu, Y.; Karniadakis, G. E., A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials, Comput. Methods Appl. Mech. Engrg., 391, Article 114587 pp. (2022) · Zbl 1507.74383
[35] Oommen, V.; Shukla, K.; Goswami, S.; Dingreville, R.; Karniadakis, G. E., Learning two-phase microstructure evolution using neural operators and autoencoder architectures (2022), http://dx.doi.org/10.48550/ARXIV.2204.07230
[36] Yin, M.; Ban, E.; Rego, B. V.; Zhang, E.; Cavinato, C.; Humphrey, J. D.; Em Karniadakis, G., Simulating progressive intramural damage leading to aortic dissection using DeepONet: an operator-regression neural network, J. R. Soc. Interface, 19, 187, Article 20210670 pp. (2022)
[37] Liu, L.; Cai, W., Multiscale DeepONet for nonlinear operators in oscillatory function spaces for building seismic wave responses (2021), arXiv preprint arXiv:2111.04860
[38] Leite, I. M.S.; Yamim, J. D.M.; da Fonseca, L. G., The DeepONets for finance: An approach to Calibrate the Heston model, (Marreiros, G.; Melo, F. S.; Lau, N.; Lopes Cardoso, H.; Reis, L. P., Progress in Artificial Intelligence (2021), Springer International Publishing: Springer International Publishing Cham), 351-362
[39] Remlinger, C.; Mikael, J.; Elie, R., Robust Operator Learning to Solve PDEWorking Papers hal-03599726 (2022), HAL
[40] Wang, S.; Perdikaris, P., Long-time integration of parametric evolution equations with physics-informed DeepONets (2021), arXiv preprint arXiv:2106.05384
[41] Wang, S.; Wang, H.; Perdikaris, P., Improved architectures and training algorithms for deep operator networks, J. Sci. Comput., 35, 92 (2022) · Zbl 07550028
[42] Wang, S.; Wang, H.; Perdikaris, P., Learning the solution operator of parametric partial differential equations with physics-informed DeepONets, Sci. Adv., 7, 40, eabi8605 (2021)
[43] Beltrami, E., On bilinear functions, (Moonen, M.; De Moor, B., SVD and Signal Processing III (1995), Elsevier Science B.V.: Elsevier Science B.V. Amsterdam), 5-18 · Zbl 0826.15001
[44] Jordan, C., Mémoire sur les formes bilinéaires, J. Math. Pures Appl., 19, 35-54 (1875) · JFM 06.0070.02
[45] Stewart, G., Stewart, G.W.: On the early history of the singular value decomposition. SIAM Rev. 35(4), 551-566, SIAM Rev., 35 (2001) · Zbl 0799.01016
[46] Sirovich, L., Turbulence and the dynamics of coherent structures Part III: Dynamics and scaling, Quart. Appl. Math., 45, 3, 583-590 (1987), (ISSN: 0033569X, 15524485)
[47] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 1, 539-575 (1993)
[48] Rathinam, M.; Petzold, L. R., A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41, 5, 1893-1925 (2004) · Zbl 1053.65106
[49] Hinze, M.; Volkwein, S., Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: Error estimates and suboptimal control, (Benner, P.; Sorensen, D. C.; Mehrmann, V., Dimension Reduction of Large-Scale Systems (2005), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 261-306 · Zbl 1079.65533
[50] Lu, L.; Meng, X.; Cai, S.; Mao, Z.; Goswami, S.; Zhang, Z.; Karniadakis, G. E., A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data, Comput. Methods Appl. Mech. Engrg., 393, Article 114778 pp. (2022) · Zbl 1507.65050
[51] Kontolati, K.; Goswami, S.; Shields, M. D.; Karniadakis, G. E., On the influence of over-parameterization in manifold based surrogates and deep neural operators (2022), http://dx.doi.org/10.48550/ARXIV.2203.05071
[52] Hesthaven, J. S.; Ubbiali, S., Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363, 55-78 (2018) · Zbl 1398.65330
[53] Wang, Q.; Hesthaven, J. S.; Ray, D., Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, J. Comput. Phys., 384, 289-307 (2019) · Zbl 1459.76117
[54] Brunton, S. L.; Kutz, J. N., Singular value decomposition (SVD), (Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (2019), Cambridge University Press), 3-46 · Zbl 1407.68002
[55] Hadorn, P. S., Shift-DeepONet: Extending Deep Operator Networks for Discontinuous Output Functions (2022), ETH Zurich, Seminar for Applied Mathematics
[56] Reiss, J.; Schulze, P.; Sesterhenn, J.; Mehrmann, V., The shifted proper orthogonal decomposition: A mode decomposition for multiple transport phenomena, SIAM J. Sci. Comput., 40, 3, A1322-A1344 (2018) · Zbl 1446.65212
[57] Reiss, J., Model reduction for convective problems: formulation and application, IFAC-PapersOnLine, 51, 2, 186-189 (2018), 9th Vienna International Conference on Mathematical Modelling
[58] Papapicco, D.; Demo, N.; Girfoglio, M.; Stabile, G.; Rozza, G., The neural network shifted-proper orthogonal decomposition: A machine learning approach for non-linear reduction of hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 392, Article 114687 pp. (2022) · Zbl 1507.65208
[59] Pearson, K. F., LIII. On lines and planes of closest fit to systems of points in space, Lond. Edinb. Dublin Philos. Mag. J. Sci., 2, 11, 559-572 (1901) · JFM 32.0710.04
[60] Hotelling, H., Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 6, 417-441 (1933) · JFM 59.1182.04
[61] Jolliffe, I. T., Principal component analysis, (Lovric, M., International Encyclopedia of Statistical Science (2011), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 1094-1096
[62] Jolliffe, I. T.; Cadima, J., Principal component analysis: a review and recent developments, Phil. Trans. R. Soc. A, 374 (2016) · Zbl 1353.62067
[63] Karhunen, K., Ueber Lineare Methoden in Der Wahrscheinlichkeitsrechnung (1947), Soumalainen Tiedeakatemia
[64] Loeve, M., Probability Theory (1963), New York, Van Nostrand Reinhold: New York, Van Nostrand Reinhold London · Zbl 0108.14202
[65] Hansen, P. C., Computation of the singular value expansion, Computing, 40, 185-199 (1988) · Zbl 0631.65133
[66] Schmid, P.; Sesterhenn, J., Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656 (2008) · Zbl 1197.76091
[67] Schmid, P., Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28 (2010) · Zbl 1197.76091
[68] Brunton, S. L.; Kutz, J. N., Data-driven dynamical systems, (Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (2019), Cambridge University Press), 229-275 · Zbl 1407.68002
[69] Lloyd Trefethen, D. B., Numerical Linear Algebra (1997), SIAM: SIAM Philadelphia · Zbl 0874.65013
[70] van den Berg, R. A.; Hoefsloot, H. C.J.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, J., Centering, scaling, and transformations: improving the biological information content of metabolomics data, BMC Genomics, 7, 142 (2006)
[71] Parente, A.; Sutherland, J. C., Principal component analysis of turbulent combustion data: Data pre-processing and manifold sensitivity, Combust. Flame, 160, 2, 340-350 (2013)
[72] Armstrong, E.; Sutherland, J. C., A technique for characterising feature size and quality of manifolds, Combust. Theory Model., 25, 4, 646-668 (2021) · Zbl 1519.80019
[73] Zdybal, K.; Armstrong, E.; Parente, A.; Sutherland, J. C., PCAfold: Python software to generate, analyze and improve PCA-derived low-dimensional manifolds, SoftwareX, 12, Article 100630 pp. (2020)
[74] Lanthaler, S.; Mishra, S.; Karniadakis, G., Error estimates for DeepONets: a deep learning framework in infinite dimensions, Trans. Math. Appl., 6 (2022) · Zbl 07525076
[75] Deng, B.; Shin, Y.; Lu, L.; Zhang, Z.; Karniadakis, G. E., Approximation rates of DeepONets for learning operators arising from advection-diffusion equations, Neural Netw. (2022) · Zbl 07751473
[76] Marcati, C.; Schwab, C., Exponential convergence of deep operator networks for elliptic partial differential equations (2021), arXiv preprint arXiv:2112.08125
[77] Venturi, S.; Casey, T., ROMNet: Neural-network-based surrogates for reduced-order dynamics (2022), https://github.com/simoneventuri/ROMNet/
[78] Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), Software available from https://www.tensorflow.org/
[79] Kingma, D. P.; Ba, J., Adam: A method for stochastic optimization (2014), arXiv preprint arXiv:1412.6980
[80] McKay, M. D.; Beckman, R. J.; Conover, W. J., Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 2, 239-245 (1979) · Zbl 0415.62011
[81] Constantine, P. G.; Gleich, D. F.; Hou, Y.; Templeton, J., Model reduction with MapReduce-enabled tall and skinny singular value decomposition, SIAM J. Sci. Comput., 36, 5, S166-S191 (2014) · Zbl 1307.65045
[82] Meuris, B.; Qadeer, S.; Stinis, P., Machine-learning custom-made basis functions for partial differential equations (2021), arXiv preprint arXiv:2111.05307
[83] Brand, M., Incremental singular value decomposition of uncertain data with missing values, (Heyden et al., A., Computer Vision — ECCV 2002 (2002), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 707-720 · Zbl 1034.68580
[84] Choi, Y.; Brown, P.; Arrighi, W.; Anderson, R.; Huynh, K., Space-time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems, J. Comput. Phys., 424, Article 109845 pp. (2021) · Zbl 07508450
[85] Mojgani, R.; Balajewicz, M., Physics-aware registration based auto-encoder for convection dominated PDEs (2020), http://dx.doi.org/10.48550/ARXIV.2006.15655
[86] You, H.; Zhang, Q.; Ross, C. J.; Lee, C.-H.; Yu, Y., Learning deep implicit Fourier neural operators (IFNOs) with applications to heterogeneous material modeling, Comput. Methods Appl. Mech. Engrg., 398, Article 115296 pp. (2022) · Zbl 1507.74015
[87] Zhang, J.; Zhang, S.; Lin, G., MultiAuto-DeepONet: A multi-resolution autoencoder DeepONet for nonlinear dimension reduction, uncertainty quantification and operator learning of forward and inverse stochastic problems (2022), http://dx.doi.org/10.48550/ARXIV.2204.03193
[88] Brunton, S. L.; Kutz, J. N., Reduced order models (ROMs), (Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (2019), Cambridge University Press), 375-402 · Zbl 1407.68002
[89] Cagniart, N.; Maday, Y.; Stamm, B., Model order reduction for problems with large convection effects, Comput. Methods Appl. Sci., 131-150 (2019) · Zbl 1416.35021
[90] R. Mojgani, M. Balajewicz, Arbitrary Lagrangian Eulerian framework for efficient projection-based reduction of convection dominated nonlinear flows, in: APS Division of Fluid Dynamics Meeting Abstracts, in: APS Meeting Abstracts, 2017, p. M1.008.
[91] Rim, D.; Moe, S.; LeVeque, R. J., Transport reversal for model reduction of hyperbolic partial differential equations, SIAM/ASA J. Uncertain. Quantif., 6, 1, 118-150 (2018) · Zbl 1398.65084
[92] Nair, N. J.; Balajewicz, M., Transported snapshot model order reduction approach for parametric, steady-state fluid flows containing parameter-dependent shocks, Internat. J. Numer. Methods Engrg., 117, 12, 1234-1262 (2019) · Zbl 07865163
[93] Taddei, T., A registration method for model order reduction: Data compression and geometry reduction, SIAM J. Sci. Comput., 42, 2, A997-A1027 (2020) · Zbl 1439.65196
[94] Poinsot, T.; Veynante, D., Theoretical and numerical combustion, Prog. Energy Combust. Sci., 28 (2005)
[95] Smith, G.; Golden, D.; Frenklach, M.; Moriarty, N.; Eiteneer, B.; Goldenberg, M.; Bowman, T.; Hanson, R.; Song, S.; Jr., W.; Lissianski, V.; Qin, Z., GRI-mech 3.0 (1999), http://www.me.berkeley.edu/gri-mech/
[96] Goodwin, D. G.; Speth, R. L.; Moffat, H. K.; Weber, B. W., Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2021), http://dx.doi.org/10.5281/zenodo.4527812. Version 2.5.1. https://www.cantera.org
[97] Lemke, M.; Międlar, A.; Reiss, J.; Mehrmann, V.; Sesterhenn, J., Model reduction of reactive processes, (King, R., Active Flow and Combustion Control 2014 (2015), Springer International Publishing: Springer International Publishing Cham), 397-413 · Zbl 1308.76307
[98] Lemke, M.; Cai, L.; Reiss, J.; Pitsch, H.; Sesterhenn, J., Adjoint-based sensitivity analysis of quantities of interest of complex combustion models, Combust. Theory Model., 23, 1, 180-196 (2019) · Zbl 1519.80122
[99] Jin, P.; Meng, S.; Lu, L., MIONet: Learning multiple-input operators via tensor product (2022), http://dx.doi.org/10.48550/ARXIV.2202.06137
[100] Tan, L.; Chen, L., Enhanced DeepONet for modeling partial differential operators considering multiple input functions (2022), http://dx.doi.org/10.48550/ARXIV.2202.08942
[101] Bernardi, A.; Brachat, J.; Comon, P.; Mourrain, B., General tensor decomposition, moment matrices and applications, J. Symbolic Comput., 52, 51-71 (2013), International Symposium on Symbolic and Algebraic Computation · Zbl 1275.15017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.