×

An object-oriented framework for reduced-order models using proper orthogonal decomposition (POD). (English) Zbl 1173.80309

Summary: This work presents an object-oriented design for reduced-order modeling using the proper orthogonal decomposition (POD) technique. Object-oriented design attributes such as data encapsulation, inheritance, and polymorphism are shown to produce efficient implementations that optimize code reuse and maintainability in reduced-order models. This paper demonstrates how existing finite element libraries can be used to efficiently carry out integration of field quantities and their gradients over complex domains for producing reduced-order models that are based on the weak-form Galerkin method and POD. Furthermore, numerical examples are used to show how reduced-order models are computationally feasible for reducing CPU time as long as the computational expense incurred in solving the associated systems of linear equations is significantly higher than the computational expense related to the assembly of the system of equations.

MSC:

80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

DPIV; Diffpack
Full Text: DOI

References:

[1] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems, and Symmetry (1996), Cambridge University Press · Zbl 0890.76001
[2] Ma, X.; Karniadakis, G. E.; Park, H.; Gharib, M., DPIV-driven flow simulation: a new computational paradigm, Proc. Roy. Soc. London Ser. A - Math. Phys. Engrg. Sci., 459, 2031, 547-565 (2003) · Zbl 1116.76413
[3] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, Siam J. Numer. Anal., 40, 2, 492-515 (2002) · Zbl 1075.65118
[4] Utturkar, Y.; Zhang, B. N.; Shyy, W., Reduced-order description of fluid flow with moving boundaries by proper orthogonal decomposition, Int. J. Heat Fluid Flow, 26, 2, 276-288 (2005)
[5] Smith, T. R.; Moehlis, J.; Holmes, P., Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial, Nonlinear Dyn., 41, 1-3, 275-307 (2005) · Zbl 1094.76024
[6] Ravindran, S. S., A reduced-order approach for optimal control of fluids using proper orthogonal decomposition, Int. J. Numer. Methods Fluids, 34, 5, 425-448 (2000) · Zbl 1005.76020
[7] Atwell, J. A.; King, B. B., Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations, Math. Comput. Modell., 33, 1-3, 1-19 (2001) · Zbl 0964.93032
[8] Leibfritz, F.; Volkwein, S., Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming, Linear Algebra Appl., 415, 2-3, 542-575 (2006) · Zbl 1149.90183
[9] Ly, H. V.; Tran, H. T., Modeling and control of physical processes using proper orthogonal decomposition, Math. Comput. Modell., 33, 1-3, 223-236 (2001) · Zbl 0966.93018
[10] Amabili, M.; Sarkar, A.; Paidoussis, M. P., Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method, J. Sound Vibrat., 290, 3-5, 736-762 (2006)
[11] Han, S.; Feeny, B., Application of proper orthogonal decomposition to structural vibration analysis, Mech. Syst. Signal Process., 17, 5, 989-1001 (2003)
[12] Krysl, P.; Lall, S.; Marsden, J. E., Dimensional model reduction in non-linear finite element dynamics of solids and structures, Int. J. Numer. Methods Engrg., 51, 4, 479-504 (2001) · Zbl 1013.74071
[13] Liang, Y. C.; Lee, H. P.; Lim, S. P.; Lin, W. Z.; Lee, K. H.; Wu, C. G., Proper orthogonal decomposition and its applications - Part I: Theory, J. Sound Vibr., 252, 3, 527-544 (2002) · Zbl 1237.65040
[14] Acharjee, S.; Zabaras, N., A proper orthogonal decomposition approach to microstructure model reduction in Rodrigues space with applications to optimal control of micro structure-sensitive properties, Acta Mater., 51, 18, 5627-5646 (2003)
[15] Ganapathysubramanian, S.; Zabaras, N., Design across length scales: a reduced-order model of polycrystal plasticity for the control of micro structure-sensitive material properties, Comput. Methods Appl. Mech. Engrg., 193, 45-47, 5017-5034 (2004) · Zbl 1112.74353
[16] Fic, A.; Bialecki, R. A.; Kassab, A. J., Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method, Numer. Heat Transfer, Part B: Fundam., 48, 2, 103-124 (2005) · Zbl 1092.80010
[17] Banks, H. T.; Joyner, M. L.; Wincheski, B.; Winfree, W. P., Real time computational algorithms for eddy-current-based damage detection, Inverse Problems, 18, 3, 795-823 (2002) · Zbl 1104.65321
[18] Kopp, G. A.; Ferre, J. A.; Giralt, F., The use of pattern recognition and proper orthogonal decomposition in identifying the structure of fully-developed free turbulence, J. Fluids Engrg. - Trans. ASME, 119, 2, 289-296 (1997)
[19] Ostrowski, Z.; Bialecki, R. A.; Kassab, A. J., Estimation of constant thermal conductivity by use of proper orthogonal decomposition, Comput. Mech., 37, 1, 52-59 (2005) · Zbl 1158.80308
[20] Chatterjee, A., An introduction to the proper orthogonal decomposition, Curr. Sci., 78, 7, 808-817 (2000)
[21] Favier, J.; Kourta, A., Study of separation control on a wing profile using PIV measurements and POD analysis, Compt. Rendu. Mecaniq., 334, 4, 272-278 (2006)
[22] Cipolla, K. M.; Liakopoulos, A.; Rockwell, D. O., Quantitative imaging in proper orthogonal decomposition of flow past a delta wing, AIAA J., 36, 7, 1247-1255 (1998)
[23] Bialecki, R. A.; Kassab, A. J.; Fic, A., Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis, Int. J. Numer. Methods Engrg., 62, 6, 774-797 (2005) · Zbl 1092.80010
[24] Forde, B. W.R.; Foschi, R. O.; Stiemer, S. F., Object-oriented finite-element analysis, Comput. Struct., 34, 3, 355-374 (1990) · Zbl 0724.73216
[25] Zimmermann, T.; Duboispelerin, Y.; Bomme, P., Object-oriented finite-element programming. 1. Governing principles, Comput. Methods Appl. Mech. Engrg., 98, 2, 291-303 (1992)
[26] Besson, J.; Foerch, R., Large scale object-oriented finite element code design, Comput. Methods Appl. Mech. Engrg., 142, 1-2, 165-187 (1997) · Zbl 0896.73056
[27] Zimmermann, T.; Bomme, P.; Eyheramendy, D.; Vernier, L.; Commend, S., Aspects of an object-oriented finite element environment, Comput. Struct., 68, 1-3, 1-16 (1998) · Zbl 0940.74073
[28] Mackie, R. I., An object-oriented approach to fully interactive finite element software, Adv. Engrg. Software, 29, 2, 139-149 (1998)
[29] Zabaras, N.; Srikanth, A., An object-oriented programming approach to the Lagrangian FEM analysis of large inelastic deformations and metal-forming processes, Int. J. Numer. Methods Engrg., 45, 4, 399-445 (1999) · Zbl 0935.74074
[30] Sampath, R.; Zabaras, N., An object-oriented framework for the implementation of adjoint techniques in the design and control of complex continuum systems, Int. J. Numer. Methods Engrg., 48, 2, 239-266 (2000) · Zbl 0964.65105
[31] Commend, S.; Zimmermann, T., Object-oriented nonlinear finite element programming: a primer, Adv. Engrg. Software, 32, 8, 611-628 (2001) · Zbl 0972.74511
[32] Ma, Y. Q.; Feng, W., Object-oriented finite element analysis and programming in VC++, Appl. Math. Mech. - English Edition, 23, 12, 1437-1443 (2002)
[33] Moreno, R.; Ramaswamy, B., Object-oriented implementation of the Galerkin finite element method and its application to the numerical study of natural convective flows in enclosures, Int. J. Comput. Fluid Dyn., 17, 1, 39-60 (2003) · Zbl 1148.76347
[34] Wijesinghe, K. R.C.; Udawalpola, M. R.; Hoole, S. R.H., Towards object-oriented finite element pre-processors exploiting modem computer technology, J. Mater. Proc. Technol., 161, 1-2, 247-252 (2005)
[35] Reddy, B. D., Introductory Functional Analysis with Applications to Boundary-Value Poblems and Finite Elements (1997), Springer
[36] Langtangen, H. P.; Tveito, A., Advanced Topics in Computational Partial Differential Equations (2003), Springer · Zbl 1026.68163
[37] Langtangen, H. P., Computational Partial Differential Equations-Numerical Methods and Diffpack Programming (2003), Springer · Zbl 1037.65119
[38] Sampath, R.; Zabaras, N., An object oriented implementation of a front tracking finite element method for directional solidification processes, Int. J. Numer. Methods Engrg., 44, 9, 1227-1265 (1999) · Zbl 0943.76052
[39] InuTech, Diffpack Kernel 4.0. 2006.; InuTech, Diffpack Kernel 4.0. 2006.
[40] Acharjee, S.; Zabaras, N., A concurrent model reduction approach on spatial and random domains for the solution of stochastic PDEs, Int. J. Numer. Methods Engrg., 66, 12, 1934-1954 (2006) · Zbl 1110.76326
[41] Lieu, T.; Farhat, C.; Lesoinne, A., Reduced-order fluid/structure modeling of a complete aircraft configuration, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5730-5742 (2006) · Zbl 1124.76042
[42] Beyer, P.; Benkadda, S.; Garbet, X., Proper orthogonal decomposition and Galerkin projection for a three-dimensional plasma dynamical system, Phys. Rev. E, 61, 1, 813-823 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.