×

Development of POD-based reduced order models applied to shallow water equations using augmented Riemann solvers. (English) Zbl 1539.76136

Summary: Reduced-order models (ROMs) based on the proper orthogonal decomposition have been proposed to reduce the computational resources required by the full-order models (FOMs) to approximate partial differential equations. In this paper a Roe-based ROM is developed to solve the shallow water equations in presence of source terms more efficiently than the Roe-based FOM. The well-balanced property and other numerical corrections such as the entropy fix and the wet-dry treatment are taken into account using augmented Riemann solvers to build the Roe-based FOM. In addition to this, a time averaging approach is necessary to develop the Roe-based ROM. This approach is validated by solving some cases and the computed solutions are compared with those ones of Lax-Friedrichs-based ROMs. It is also studied whether the ROM preserves or not the well-balancing, the entropy fix and the wet-dry treatment.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

Software:

HLLE; HE-E1GODF

References:

[1] Kundu, P. K.; Cohen, I. M., Fluid Mechanics (2010), Elsevier Science
[2] Liggett, J. A., Fluid Mechanics (1994), McGraw-Hill international editions
[3] Vreugdenhil, C. B., (Numerical Methods for Shallow-Water Flow. Numerical Methods for Shallow-Water Flow, Water Science and Technology Library (1994), Springer Netherlands)
[4] Bermudez, A.; Vázquez-Cendón, M. E., Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids, 23, 8, 1049-1071 (1994) · Zbl 0816.76052
[5] Greenberg, J. M.; Leroux, A. Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33, 1, 1-16 (1996) · Zbl 0876.65064
[6] Khosh Bin Ghomash, S.; Bachmann, D.; Caviedes-Voullième, D.; Hinz, C., Impact of rainfall movement on flash flood response: A synthetic study of a semi-arid mountainous catchment, Water, 14, 12 (2022)
[7] Ran, G.; Zhang, Q.; Li, L., A depth-integrated non-hydrostatic model for nearshore wave modelling based on the discontinuous Galerkin method, Ocean Eng., 232, Article 108661 pp. (2021)
[8] Hirsch, C., Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics (2007), Elsevier Science
[9] LeVeque, R. J., (Finite Volume Methods for Hyperbolic Problems. Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics (2002), Cambridge University Press) · Zbl 1010.65040
[10] Echeverribar, I.; Morales-Hernández, M.; Brufau, P.; García-Navarro, P., 2D numerical simulation of unsteady flows for large scale floods prediction in real time, Adv. Water Resour., 134, Article 103444 pp. (2019)
[11] García-Navarro, P.; Vázquez-Cendón, M. E., On numerical treatment of the source terms in the shallow water equations, Comput. & Fluids, 29, 8, 951-979 (2000) · Zbl 0986.76051
[12] Murillo, J.; García-Navarro, P., Augmented versions of the HLL and HLLC Riemann solvers including source terms in one and two dimensions for shallow flow applications, J. Comput. Phys., 231, 20, 6861-6906 (2012) · Zbl 1284.35118
[13] Murillo, J.; Navas-Montilla, A., A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe type solutions. Application to the 1D-2D shallow water equations, Adv. Wat. Res., 98, 70-96 (2016)
[14] Einfeldt, B., On godunov-type methods for gas dynamics, SIAM J. Num. Anal., 25, 2, 294-318 (1988) · Zbl 0642.76088
[15] Harten, A.; Lax, P. D.; Leer, B., On upstream differencing and godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61 (1983) · Zbl 0565.65051
[16] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[17] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228 (1996) · Zbl 0877.65065
[18] Liu, X. D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 1, 200-212 (1994) · Zbl 0811.65076
[19] Haleem, D. A.; Kesserwani, G.; Caviedes-Voullième, D., Haar wavelet-based adaptive finite volume shallow water solver, J. Hydroinformatics, 17, 6, 857-873 (2015)
[20] Navas-Montilla, A.; Solán-Fustero, P.; Murillo, J.; García-Navarro, P., Discontinuous Galerkin well-balanced schemes using augmented Riemann solvers with application to the shallow water equations, J. Hydroinformatics, 22, 5, 1038-1058 (2020)
[21] Prud’Homme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G., Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, J. Fluids Eng., 124, 1, 70-80 (2001)
[22] Lumley, J. L., The structure of inhomogeneous turbulent flows, Atmos. Turb. Rad. Wave Prop., 166-176 (1967)
[23] Karhunen, K., Über lineare methoden in der wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 37, 1-79 (1947) · Zbl 0030.16502
[24] Loève, M., (Probability Theory. Probability Theory, The University Series in Higher Mathematics (1960), D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-New York-London), xvi+685 · Zbl 0095.12201
[25] Pearson, K., LIII. On lines and planes of closest fit to systems of points in space, Lond., Edinb., Dublin Philos. Mag. J. Sci., 2, 11, 559-572 (1901) · JFM 32.0710.04
[26] Jolliffe, I. T., (Principal Component Analysis. Principal Component Analysis, Springer Series in Statistics (2002), Springer) · Zbl 1011.62064
[27] Ahmed, M.; San, O., Stabilized principal interval decomposition method for model reduction of nonlinear convective systems with moving shocks, J. Comput. Appl. Math., 37, 6870-6902 (2018) · Zbl 1413.37055
[28] Borggaard, J.; Hay, A.; Pelletier, D., Interval-based reduced-order models for unsteady fluid flow, Int. J. Numer. Anal. Model., 4, 353-367 (2007) · Zbl 1133.37342
[29] Christensen, E. A.; Brøns, M.; Sørensen, J. N., Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows, SIAM J. Sci. Comput., 21, 4, 1419-1434 (1999) · Zbl 0959.35018
[30] IJzerman, W. L., Signal Representation and Modeling of Spatial Structures in Fluids (2000), Universiteit Twente, (Ph.D. thesis)
[31] Rim, D.; Peherstorfer, B.; Mandli, K. T., Manifold Approximations via Transported Subspaces: Model reduction for transport-dominated problems (2020), ArXiv 1912.13024
[32] Towne, A.; Schmidt, O. T.; Colonius, T., Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis, J. Fluid Mech., 847, 821-867 (2018) · Zbl 1404.76145
[33] Zokagoa, J.-M.; Soulaïmani, A., A POD-based reduced-order model for uncertainty analyses in shallow water flows, Int. J. Comput. Fluid Dyn., 32, 6-7, 278-292 (2018) · Zbl 07474471
[34] Sirovich, L., Turbulence and the dynamics of coherent structures. I - Coherent structures. II - symmetries and transformations. III - Dynamics and scaling, Q. Appl. Math., 45 (1987), 561-571,573-582, 583-590 · Zbl 0676.76047
[35] Lu, H.; Tartakovsky, D. M., Lagrangian dynamic mode decomposition for construction of reduced-order models of advection-dominated phenomena, J. Comput. Phys., 407, Article 109229 pp. (2020) · Zbl 07504703
[36] Mojgani, R.; Balajewicz, M., Low-rank registration based manifolds for convection-dominated PDEs, Proc. AAAI Conf. Artif. Intell., 35, 1, 399-407 (2021)
[37] Solán-Fustero, P.; Gracia, J. L.; Navas-Montilla, A.; García-Navarro, P., A POD-based ROM strategy for the prediction in time of advection-dominated problems, J. Comput. Phys., 471, Article 111672 pp. (2022) · Zbl 07605620
[38] Galerkin, B. G., Rods and plates. Series occurring in various questions concerning the elastic equilibrium of rods and plates, Eng. Bull. (Vestnik Inzhenerov), 19, 897-908 (1915)
[39] Ahmed, S. E.; San, O.; Bistrian, D. A.; Navon, I. M., Sampling and resolution characteristics in reduced order models of shallow water equations: Intrusive vs nonintrusive, Internat. J. Numer. Methods Fluids, 92, 8, 992-1036 (2020)
[40] Schmid, P. J., Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28 (2010) · Zbl 1197.76091
[41] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339, 9, 667-672 (2004) · Zbl 1061.65118
[42] S. Chaturantabut, D.C. Sorensen, Discrete Empirical Interpolation for nonlinear model reduction, in: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, 2009, pp. 4316-4321.
[43] Ştefănescu, R.; Navon, I. M., POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model, J. Comput. Phys., 237, 95-114 (2013) · Zbl 1286.76106
[44] Lee, G. Y.; Park, K. C.; Park, Y. H., Reduced-order modeling via proper generalized decomposition for uncertainty quantification of frequency response functions, Comput. Methods Appl. Mech. Eng., 401, Article 115643 pp. (2022) · Zbl 1507.74547
[45] Goutaudier, D.; Berthe, L.; Chinesta, F., Proper Generalized Decomposition with time adaptive space separation for transient wave propagation problems in separable domains, Comput. Methods Appl. Mech. Eng., 380, Article 113755 pp. (2021) · Zbl 1506.74403
[46] Ghnatios, C.; Hachem, E., A stabilized mixed formulation using the proper generalized decomposition for fluid problems, Comput. Methods Appl. Mech. Eng., 346, 769-787 (2019) · Zbl 1440.76063
[47] Dehghan, M.; Abbaszadeh, M., The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations, J. Comput. Phys., 351, 478-510 (2017) · Zbl 1380.65301
[48] Dossa-Fernandes, J. W.; Kuche-Sanches, R. A.; Barbarulo, A., A stabilized mixed space-time Proper Generalized Decomposition for the Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 386, Article 114102 pp. (2021) · Zbl 1507.76101
[49] Lorenzi, S.; Cammi, A.; Luzzi, L.; Rozza, G., POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations, Comput. Methods Appl. Mech. Eng., 311, 151-179 (2016) · Zbl 1439.76112
[50] Rowley, C. W.; Colonius, T.; Murray, R. M., Model reduction for compressible flows using POD and Galerkin projection, Physica D, 189, 1, 115-129 (2004) · Zbl 1098.76602
[51] Ş.tefănescu, R.; Sandu, A.; Navon, I. M., Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations, Int. J. Num. Met. Fluids, 76, 8, 497-521 (2014)
[52] Zokagoa, J.-M.; Soulaïmani, A., A POD-based reduced-order model for free surface shallow water flows over real bathymetries for Monte-Carlo-type applications, Comput. Methods Appl. Mech. Eng., 221-222, 1-23 (2012) · Zbl 1253.76070
[53] Zokagoa, J.-M.; Soulaïmani, A., Low-order modelling of shallow water equations for sensitivity analysis using proper orthogonal decomposition, Int. J. Comput. Fluid Dyn., 26, 5, 275-295 (2012) · Zbl 07506655
[54] Milano, M.; Koumoutsakos, P., Neural network modeling for near wall turbulent flow, J. Comput. Phys., 182, 1, 1-26 (2002) · Zbl 1090.76535
[55] Peters, N.; Wissink, A.; Ekaterinaris, J., Machine learning-based surrogate modeling approaches for fixed-wing store separation, Aeros. Sci. Tech., 133, Article 108150 pp. (2023)
[56] Fresca, S.; Manzoni, A., POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition, Comput. Methods Appl. Mech. Eng., 388, Article 114181 pp. (2022) · Zbl 1507.65181
[57] Yu, J.; Lu, L.; Meng, X.; Karniadakis, G. E., Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems, Comput. Methods Appl. Mech. Eng., 393, Article 114823 pp. (2022) · Zbl 1507.65217
[58] IJzerman, W. L.; van Groesen, E., Low-dimensional model for vortex merging in the two-dimensional temporal mixing layer, Eur. J. Mech. - B/Fluids, 20, 6, 821-840 (2001) · Zbl 1034.76015
[59] Ingimarson, S.; Rebholz, L. G.; Iliescu, T., Full and reduced order model consistency of the nonlinearity discretization in incompressible flows, Comput. Methods Appl. Mech. Eng., 401, Article 115620 pp. (2022) · Zbl 1507.76039
[60] García-Archilla, B.; Novo, J.; Rubino, S., On the influence of the nonlinear term in the numerical approximation of Incompressible flows by means of proper orthogonal decomposition methods, Comput. Methods Appl. Mech. Eng., 405, Article 115866 pp. (2023) · Zbl 1539.76111
[61] Courant, R.; Friedrichs, K.; Lewy, H., On the partial difference equations of mathematical physics, IBM J. Res. Dev., 11, 2, 215-234 (1967) · Zbl 0145.40402
[62] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2009), Springer Berlin Heidelberg · Zbl 1227.76006
[63] Burguete, J.; García-Navarro, P., Improving simple explicit methods for unsteady open channel and river flow, Internat. J. Numer. Methods Fluids, 45, 2, 125-156 (2004) · Zbl 1079.76594
[64] Brufau, P.; Vázquez-Cendón, M. E.; García-Navarro, P., A numerical model for the flooding and drying of irregular domains, Internat. J. Numer. Methods Fluids, 39, 3, 247-275 (2002) · Zbl 1094.76538
[65] Gosses, M.; Nowak, W.; Wöhling, T., Explicit treatment for Dirichlet, Neumann and Cauchy boundary conditions in POD-based reduction of groundwater models, Adv. Water Resour., 115, 160-171 (2018)
[66] Karatzas, E. N.; Stabile, G.; Nouveau, L.; Scovazzi, G.; Rozza, G., A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow, Comput. Methods Appl. Mech. Eng., 347, 568-587 (2019) · Zbl 1440.76073
[67] Zeng, X.; Stabile, G.; Karatzas, E. N.; Scovazzi, G.; Rozza, G., Embedded domain reduced basis models for the shallow water hyperbolic equations with the shifted boundary method, Comput. Methods Appl. Mech. Eng., 398, Article 115143 pp. (2022) · Zbl 1507.76128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.