×

Randomized greedy magic point selection schemes for nonlinear model reduction. (English) Zbl 07909967

Summary: An established way to tackle model nonlinearities in projection-based model reduction is via relying on partial information. This idea is shared by the methods of gappy proper orthogonal decomposition (POD), missing point estimation (MPE), masked projection, hyper reduction, and the (discrete) empirical interpolation method (DEIM). The selected indices of the partial information components are often referred to as “magic points.” The original contribution of the work at hand is a novel randomized greedy magic point selection. It is known that the greedy method is associated with minimizing the norm of an oblique projection operator, which, in turn, is associated with solving a sequence of rank-one SVD update problems. We propose simplification measures so that the resulting greedy point selection has the following main features: (1) The inherent rank-one SVD update problem is tackled in a way, such that its dimension does not grow with the number of selected magic points. (2) The approach is online efficient in the sense that the computational costs are independent from the dimension of the full-scale model. To the best of our knowledge, this is the first greedy magic point selection that features this property. We illustrate the findings by means of numerical examples. We find that the computational cost of the proposed method is orders of magnitude lower than that of its deterministic counterpart. Nevertheless, the prediction accuracy is just as good if not better. When compared to a state-of-the-art randomized method based on leverage scores, the randomized greedy method outperforms its competitor.

MSC:

65F20 Numerical solutions to overdetermined systems, pseudoinverses
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

References:

[1] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 4, 483-531, 2015 · Zbl 1339.37089 · doi:10.1137/130932715
[2] Chaturantabut, S.; Sorensen, D., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764, 2010 · Zbl 1217.65169 · doi:10.1137/090766498
[3] Drmač, Z.; Gugercin, S., A new selection operator for the discrete empirical interpolation method-improved a priori error bound and extensions, SIAM J. Sci. Comput., 38, 2, 631-648, 2016 · Zbl 1382.65193 · doi:10.1137/15M1019271
[4] Astrid, P.; Weiland, S.; Willcox, K.; Backx, T., Missing points estimation in models described by proper orthogonal decomposition, IEEE Trans. Autom. Control, 53, 10, 2237-2251, 2008 · Zbl 1367.93110 · doi:10.1109/TAC.2008.2006102
[5] Zimmermann, R.; Willcox, K., An accelerated greedy missing point estimation procedure, SIAM J. Sci. Comput., 38, 5, 2827-2850, 2016 · Zbl 1348.65045 · doi:10.1137/15M1042899
[6] Everson, R.; Sirovich, L., Karhunen-Loève procedure for gappy data, J. Opt. Soc. Am., 12, 8, 1657-1664, 1995 · doi:10.1364/JOSAA.12.001657
[7] Bui-Thanh, T.; Damodaran, M.; Willcox, K., Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics, AIAA J., 42, 8, 1505-1516, 2004 · doi:10.2514/1.2159
[8] Galbally, D.; Fidkowski, K.; Willcox, K.; Ghattas, O., Non-linear model reduction for uncertainty quantification in large-scale inverse problems, Int. J. Numer. Meth. Eng., 81, 1581-1608, 2010 · Zbl 1183.76837 · doi:10.1002/nme.2746
[9] Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathématique. Académie des Sciences. Paris. I 339, 667-672 (2004) · Zbl 1061.65118
[10] Peherstorfer, B.; Drmač, Z.; Gugercin, S., Stability of discrete empirical interpolation and gappy proper orthogonal decomposition with randomized and deterministic sampling points, SIAM J. Sci. Comput., 42, 5, 2837-2864, 2020 · Zbl 1453.65287 · doi:10.1137/19M1307391
[11] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242, 623-647, 2013 · Zbl 1299.76180 · doi:10.1016/j.jcp.2013.02.028
[12] Amsallem, D.; Zahr, MJ; Washabaugh, K., Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction, Adv. Comput. Math., 41, 5, 1187-1230, 2015 · Zbl 1331.65094 · doi:10.1007/s10444-015-9409-0
[13] Clark, E., Askham, T., Brunton, S.L., Kutz, J.N.: Greedy sensor placement with cost constraints. ArXiv e-prints. (2018) arXiv:1805.03717 [math.OC]
[14] Sargsyan, S.; Brunton, SL; Kutz, JN, Online interpolation point refinement for reduced-order models using a genetic algorithm, SIAM J. Scientific Computing., 40, 1, 283-304, 2018 · Zbl 1383.65123 · doi:10.1137/16M1086352
[15] Saibaba, AK, Randomized discrete empirical interpolation method for nonlinear model reduction, SIAM J. Sci. Comput., 42, 3, 1582-1608, 2020 · Zbl 07206903 · doi:10.1137/19M1243270
[16] Mahoney, M.W., Drineas, P.: Cur matrix decompositions for improved data analysis. Proc. Natl. Acad. Sci. 106(3), 697-702 (2009). doi:10.1073/pnas.0803205106http://www.pnas.org/content/106/3/697.full.pdf+html · Zbl 1202.68480
[17] Sorensen, DC; Embree, M., A DEIM induced CUR factorization, SIAM J. Sci. Comput., 38, 3, 1454-1482, 2016 · Zbl 1382.65121 · doi:10.1137/140978430
[18] Bekemeyer, P.; Ripepi, M.; Heinrich, R.; Görtz, S., Nonlinear unsteady reduced-order modeling for gust-load predictions, AIAA J., 57, 5, 1839-1850, 2019 · doi:10.2514/1.J057804
[19] Wentland, C.R., Huang, C., Duraisamy, K.: Investigation of sampling strategies for reduced-order models of rocket combustors. doi:10.2514/6.2021-1371
[20] Szyld, DB, The many proofs of an identity on the norm of oblique projections, Numerical Algorithms., 42, 309-323, 2006 · Zbl 1102.47002 · doi:10.1007/s11075-006-9046-2
[21] Wilkinson, JH, The algebraic eigenvalue problem, 1965, Oxford, UK: Clarendon Press, Oxford, UK · Zbl 0258.65037
[22] Ipsen, ICF; Nadler, B., Refined perturbation bounds for eigenvalues of hermitian and non-hermitian matrices, SIAM Journal on Matrix Analysis Applications., 31, 40-53, 2009 · Zbl 1189.15022 · doi:10.1137/070682745
[23] Gu, M.; Eisenstat, SC, A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem, SIAM J. Matrix Anal. Appl., 15, 1266-1276, 1994 · Zbl 0807.65029 · doi:10.1137/S089547989223924X
[24] Gu, M., Stanley, Eisenstat, S.C., O, I.: A stable and fast algorithm for updating the singular value decomposition. Technical report (1994)
[25] Candes, E.; Recht, B., Exact matrix completion via convex optimization, Found. Comput. Math., 9, 717-772, 2009 · Zbl 1219.90124 · doi:10.1007/s10208-009-9045-5
[26] Balzano, L., Recht, B., Nowak, R.: High-dimensional matched subspace detection when data are missing. In: International Symposium on Information Theory, pp. 1638-1642 (2010). IEEE
[27] Recht, B., A simpler approach to matrix completion, J. Mach. Learn. Res., 12, 3413-3430, 2011 · Zbl 1280.68141
[28] Gross, D., Recovering low-rank matrices from few coefficients in any basis, IEEE Trans. Inf. Theory, 57, 3, 1548-1566, 2011 · Zbl 1366.94103 · doi:10.1109/TIT.2011.2104999
[29] Jakovčević Stor, N., Slapničar, I., Barlow, J.L.: Forward stable eigenvalue decomposition of rank-one modifications of diagonal matrices. Linear Algebra and its Applications. 487, 301-315 (2015) 10.1016/j.laa.2015.09.025 · Zbl 1325.65053
[30] Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic mode decomposition. Society for Industrial and Applied Mathematics, Philadelphia, PA (2016). 10.1137/1.9781611974508 · Zbl 1365.65009
[31] Pinnau, R.: Model reduction via proper orthogonal decomposition. In: Schilders, W.H.A., Vorst, H.A., Rommes, J. (eds.) Model Order Reduction: Theory, Research Aspects and Applications. Springer Series Mathematics in Industry, vol. 13, pp. 95-109. Springer, ??? (2008) · Zbl 1154.93012
[32] Afkham, BM; Hesthaven, JS, Structure preserving model reduction of parametric Hamiltonian systems, SIAM J. Sci. Comput., 39, 6, 2616-2644, 2017 · Zbl 1379.78019 · doi:10.1137/17M1111991
[33] Zimmermann, R., Bendokat, T.: Geometric optimization for structure-preserving model reduction of Hamiltonian systems. In: MATHMOD: 10th Vienna International Conference on Mathematical Modelling. IFAC-PapersOnLine. Elsevier, Austria (2022)
[34] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations., 2nd edn. Springer Series in Computational Mathematics, vol. 31, p. 644. Springer, Berlin (2006) · Zbl 1094.65125
[35] Peng, L.; Mohseni, K., Symplectic model reduction of Hamiltonian systems, SIAM J. Sci. Comput., 38, 1, 1-27, 2016 · Zbl 1330.65193 · doi:10.1137/140978922
[36] Brunton, SL; Kutz, JN, Data-driven science and engineering: machine learning, 2019, Cambrisge, UK: Dynamical Systems and Control. Cambridge University Press, Cambrisge, UK · Zbl 1407.68002 · doi:10.1017/9781108380690
[37] Inc., T.M.: MATLAB Version: 9.13.0 (R2022b). https://www.mathworks.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.