×

Ideal minimal residual-based proper generalized decomposition for non-symmetric multi-field models – application to transient elastodynamics in space-time domain. (English) Zbl 1296.74139

Summary: It is now well established that separated representations built with the help of proper generalized decomposition (PGD) can drastically reduce computational costs associated with solution of a wide variety of problems. However, it is still an open question to know if separated representations can be efficiently used to approximate solutions of hyperbolic evolution problems in space-time domain. In this paper, we numerically address this issue and concentrate on transient elastodynamic models. For such models, the operator associated with the space-time problem is non-symmetric and low-rank approximations are classically computed by minimizing the space-time residual in a natural \(\mathrm{L}_{2}\) sense, yet leading to non optimal approximations in usual solution norms. Therefore, a new algorithm has been recently introduced by one of the authors and allows to find a quasi-optimal low-rank approximation a priori with respect to a target norm. We presently extend this new algorithm to multi-field models. The proposed algorithm is applied to elastodynamics formulated over space-time domain with the Time Discontinuous Galerkin method in displacement and velocity. Numerical examples demonstrate convergence of the proposed algorithm and comparisons are made with classical a posteriori and a priori approaches.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics

References:

[1] Ammar, A.; Mokdad, B.; Chinesta, F.; Keunings, R., A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory, J. Non-Newtonian Fluid Mech., 139, 153-176 (2006) · Zbl 1195.76337
[2] Ammar, A.; Mokdad, B.; Chinesta, F.; Keunings, R., A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations, J. Non-Newtonian Fluid Mech., 144, 98-121 (2007) · Zbl 1196.76047
[3] Ammar, A., The proper generalized decomposition: a powerful tool for model reduction, Int. J. Mater. Form., 3 (2010), 89-10
[4] Ammar, A.; Chinesta, F.; Falcó, A., On the convergence of a Greedy rank-one update algorithm for a class of linear systems, Arch. Comput. Methods Eng., 17, 473-486 (2010) · Zbl 1269.65120
[5] Beylkin, G.; Mohlenkamp, M. J., Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput., 26, 2133-2159 (2005) · Zbl 1085.65045
[6] Beringhier, M.; Gueguen, M.; Grandidier, J. C., Solution of strongly coupled multiphysics problems using space-time separated representations - application to thermoviscoelasticity, Arch. Comput. Methods Eng., 17, 393-401 (2010) · Zbl 1269.74206
[7] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539-575 (1993)
[9] Bognet, B.; Bordeu, F.; Chinesta, F.; Leygue, A.; Poitou, A., Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity, Comput. Methods Appl. Mech. Eng., 201-204, 1-12 (2012) · Zbl 1239.74045
[10] Boucinha, L.; Gravouil, A.; Ammar, A., Space-time proper generalized decompositions for the resolution of transient elastodynamic models, Comput. Methods Appl. Mech. Eng., 255, 67-88 (2013) · Zbl 1297.74016
[13] Cavin, P.; Gravouil, A.; Lubrecht, A.; Combescure, A., Automatic energy conserving space-time refinement for linear dynamic structural problems, Int. J. Numer. Methods Eng., 64, 304-321 (2005) · Zbl 1181.74132
[14] Cohen, A.; Dahmen, W.; Welper, G., Adaptivity and variational stabilization for convection-diffusion equations, ESAIM Math. Model. Numer. Anal., 46, 1247-1273 (2012) · Zbl 1270.65065
[15] Chinesta, F.; Ammar, A.; Lemarchand, F.; Beauchene, P.; Boust, F., Alleviating mesh constraints: model reduction, parallel time integration and high resolution homogenization Comput, Methods Appl. Mech. Eng., 197, 400-413 (2008) · Zbl 1169.74530
[16] Chinesta, F.; Ladevèze, P.; Cueto, E., A short review on model order reduction based on proper generalized decomposition, Arch. Comput. Methods Eng., 404, 395-404 (2011)
[17] Dahmen, W.; Huang, C.; Schwab, C.; Welper, G., Adaptive Petrov-alerkin methods for first order transport equations, J. Numer. Anal., 50, 2420-2445 (2012) · Zbl 1260.65091
[18] Dumon, A.; Allery, C.; Ammar, A., Proper general decomposition (PGD) for the resolution of Navier-Stokes equations, J. Comput. Phys., 230, 1387-1407 (2011) · Zbl 1391.76099
[19] Dureisseix, D.; Ladevèze, P.; Schrefler, B. A., A computational strategy for multiphysics problems: application to poroelasticity, Int. J. Numer. Methods Eng., 56, 10, 1489-1510 (2003) · Zbl 1106.74425
[20] Falcó, A.; Nouy, A., A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach, J. Math. Anal. Appl., 376, 469-480 (2011) · Zbl 1210.65009
[21] Falcó, A.; Nouy, A., Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces, Numer. Math., 121, 503-530 (2012) · Zbl 1264.65095
[22] Falcó, A.; Hilario, L.; Montés, N.; Mora, M. C., Numerical strategies for the Galerkin proper generalized decomposition method, Math. Comput. Model., 57, 1694-1702 (2013) · Zbl 1305.65229
[23] Géradin, M.; Rixen, D., Mechanical Vibrations, Theory and Application to Structural Dynamics (1994), Wiley
[24] Glösmann, P.; Kreuzer, E., On the application of Karhunen-Loeve transform to transient dynamic systems, J. Sound Vib., 328, 507-519 (2009)
[25] Hackbusch, W., Tensor Spaces and Numerical Tensor Calculus (2012), Springer · Zbl 1244.65061
[26] Hulbert, G. M.; Hughes, T. J.R., Space-time finite element methods for second-order hyperbolic equations, Comput. Methods Appl. Mech. Eng., 84, 327-348 (1990) · Zbl 0754.73085
[27] Hulbert, G. M., Computational structural dynamics. Computational structural dynamics, Encyclopedia of Computational Mechanics (2004), John Wiley & Sons
[28] Kerschen, G.; Golinval, J. C.; Vakakis, A. F.; Bergman, L. A., The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview, Nonlinear Dyn., 41, 147-169 (2005) · Zbl 1103.70011
[29] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, 90, 117-148 (2001) · Zbl 1005.65112
[30] Ladevèze, P., Nonlinear Computational Structural Mechanics: New Approaches and Non-incremental Methods of Calculation (1999), Springer · Zbl 0912.73003
[31] Leygue, A.; Verron, E., A first step towards the use of proper general decomposition method for structural optimization, Arch. Comput. Methods Eng., 17, 465-472 (2010) · Zbl 1269.74182
[32] Néron, D.; Dureisseix, D., A computational strategy for thermo-poroelastic structures with a time-space interface coupling, Int. J. Numer. Methods Eng., 75, 9, 1053-1084 (2008) · Zbl 1195.74191
[33] Néron, D.; Ladevèze, P., Proper generalized decomposition for multiscale and multiphysics problems, Arch. Comput. Methods Eng., 17, 351-372 (2010) · Zbl 1269.74209
[34] Nouy, A., A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 196, 4521-4537 (2007) · Zbl 1173.80311
[35] Nouy, A., Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems, Arch. Comput. Methods Eng., 17, 403-434 (2010) · Zbl 1269.76079
[36] Nouy, A., A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations, Comput. Methods Appl. Mech. Eng., 199, 1603-1626 (2010) · Zbl 1231.76219
[37] Qu, Z. Q., Model Order Reduction Techniques with Application in Finite Element Analysis (2004), Springer-Verlag: Springer-Verlag London · Zbl 1074.74001
[38] Sterck, H.; Miller, K., An adaptive algebraic multigrid algorithm for low-rank canonical tensor decomposition, SIAM J. Sci. Comput., 35, 1-24 (2013) · Zbl 1264.65045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.