×

Maximal operator with rough kernel in variable Musielak-Morrey-Orlicz type spaces, variable Herz spaces and grand variable Lebesgue spaces. (English) Zbl 1387.42020

Let us consider the maximal operator \(M_{\Omega}\), defined for a function \(f\) in \(\mathbb{R}^n,\) as follows \[ M_{\Omega} f(x):= \sup_{r>0} \int_{|y|< r} |\Omega(y)| f(x-y) \;dy, \] which is related to a kernel function \(\Omega\) in \(L^1(\mathbb{S}^{n-1})\), homogeneous of degree \(0\).
The boundedness of \(M_{\Omega}\) in some non-standard function spaces is considered, such as generalized variable exponent Morrey spaces, generalized Orlicz-Morrey, complementary generalized Morrey or variable exponent Herz spaces. Although the classical rotation method is not applicable in this context, the general technique applied is based on rescaling properties of these spaces. The results obtained are new, even for the counterpart spaces that have \(p\) as a constant exponent.

MSC:

42B25 Maximal functions, Littlewood-Paley theory
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] Al-Qassem, H., Al-Salman, A.: \[l^p\] lp-boundedness of a class of singular integral operators with rough kernels. Turk. J. Math. 25, 519-533 (2001) · Zbl 0993.42007
[2] Al-Qassem, H., Cheng, L., Pan, Y.: On certain rough integral operators and extrapolation. J. Ineq. Pure Appl. Math. 10, 15 (2009) · Zbl 1177.42008
[3] Al-Salman, A.: Rough oscillatory singular integral operators-II. Turk. J. Math. 27, 565-579 (2003) · Zbl 1057.42008
[4] Al-Salman, A.: Maximal operators with rough kernels on product domains. J. Math. Anal. Appl. 311(1), 338-351 (2005) · Zbl 1085.42009 · doi:10.1016/j.jmaa.2005.02.048
[5] Al-Salman, A.: On a class of singular integral operators with rough kernels. Can. Math. Bull. 4(1), 3-10 (2006) · Zbl 1140.42002 · doi:10.4153/CMB-2006-001-9
[6] Balakishiyev, A.S., Guliyev, V.S., Gurbuz, F., Serbetci, A.: Sublinear operators with rough kernel generated by Calderón-Zygmund operators and their commutators on generalized local Morrey spaces. J. Inequal. Appl. 2015, 18 (2015) · Zbl 1309.42012 · doi:10.1186/s13660-015-0582-y
[7] Chanillo, S., Watson, D., Wheeden, R.: Some integral and maximal operators related to starlike sets. Studia Math. 107(3), 223-255 (1993) · Zbl 0809.42008 · doi:10.4064/sm-107-3-223-255
[8] Chen, L.-K., Lin, H.: A maximal operator related to a class of singular integrals. Ill. J. Math. 34(1), 296-321 (1990)
[9] Ding, Y.: Weak type bounds for a class of rough operators with power weights. Proc. Am. Math. Soc. 125(10), 2939-2942 (1997) · Zbl 0887.42008 · doi:10.1090/S0002-9939-97-03914-2
[10] Ding, Y., Lin, C.-C.: A class of maximal operators with rough kernel on product spaces. Ill. J. Math. 45(2), 545-557 (2001) · Zbl 0996.42009
[11] Ding, Y., Lu, S.: Weighted norm inequalities for fractional integral operators with rough kernel. Can. J. Math. 50(1), 29-39 (1999) · Zbl 0905.42010 · doi:10.4153/CJM-1998-003-1
[12] Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals. Proc. Am. Math. Soc. 336(2), 869-880 (1993) · Zbl 0770.42011 · doi:10.1090/S0002-9947-1993-1089418-5
[13] Hu, G., Lu, S., Yang, D.: Boundedness of rough singular integral operators on homogeneous Herz spaces. J. Austral. Math. Soc. (Series A) 66(2), 201-223 (1999) · Zbl 0927.42010 · doi:10.1017/S1446788700039318
[14] Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for singular and fractional integrals. Trans. Am. Math. Soc. 161, 261-274 (1971) · Zbl 0289.26010 · doi:10.1090/S0002-9947-1971-0285938-7
[15] Sjögren, P., Soria, F.: Rough maximal functions and rough singular integral operators applied to integrable radial functions. Rev. Mat. Iberoam. 13(1), 691-701 (1997) · Zbl 0880.42010
[16] Lu, S., Xu, L.: Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces. Hokkaido Math. J. 34(2), 299-314 (2005) · Zbl 1081.42012 · doi:10.14492/hokmj/1285766224
[17] Balakishiyev, A.S., Guliyev, V.S., Gurbuz, F., Serbetci, A.: Sublinear operators with rough kernel generated by Calderón-Zygmund operators and their commutators on generalized local Morrey spaces. J. Inequal. Appl. 2015, 61 (2015) · Zbl 1309.42012 · doi:10.1186/s13660-015-0582-y
[18] Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289-309 (1956) · Zbl 0072.11501 · doi:10.2307/2372517
[19] Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164(3), 213-259 (2002) · Zbl 1038.76058 · doi:10.1007/s00205-002-0208-7
[20] Acerbi, E., Mingione, G.: Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris 334(9), 817-822 (2002) · Zbl 1017.76098 · doi:10.1016/S1631-073X(02)02337-3
[21] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000) · Zbl 0962.76001
[22] Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52(1), 19-36 (2006) · Zbl 1117.76004 · doi:10.1007/s11565-006-0002-9
[23] Aboulaich, R., Boujena, S., El Guarmah, E.: Sur un modèle non-linéaire pour le débruitage de l’image. C. R. Math. Acad. Sci. Paris 345(8), 425-429 (2007) · Zbl 1214.35034 · doi:10.1016/j.crma.2007.09.009
[24] Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56(4), 874-882 (2008) · Zbl 1155.35389 · doi:10.1016/j.camwa.2008.01.017
[25] Blomgren, P., Chan, T., Mulet, P., Vese, L., Wan, W.: Variational PDE models and methods for image processing. In: Numerical analysis 1999. In: Proceedings of the 18th Dundee biennial conference, Univ. of Dundee, GB, June 29th-July 2nd, 1999, Boca Raton, FL: Chapman & Hall/ CRC, 2000, pp. 43-67 · Zbl 0953.68621
[26] Bollt, E.M., Chartrand, R., Esedo \[\bar{\rm g}\] g¯lu, S., Schultz, P., Vixie, K.R.: Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion. Adv. Comput. Math. 31(1-3), 61-85 (2009) · Zbl 1169.94302
[27] Chen, Y., Guo, W., Zeng, Q., Liu, Y.: A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images. Inverse Probl. Imaging 2(2), 205-224 (2008) · Zbl 1391.94063 · doi:10.3934/ipi.2008.2.205
[28] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383-1406 (2006) · Zbl 1102.49010 · doi:10.1137/050624522
[29] Wunderli, T.: On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions. J. Math. Anal. Appl. 364(2), 591-598 (2010) · Zbl 1183.49024 · doi:10.1016/j.jmaa.2009.10.064
[30] Harjulehto, P., Hästö, P., Lê, U.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods 72(12), 4551-4574 (2010) · Zbl 1188.35072 · doi:10.1016/j.na.2010.02.033
[31] Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. Praha 51(4), 355-425 (2006) · Zbl 1164.49324 · doi:10.1007/s10778-006-0110-3
[32] Cruz-Uribe, D .V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Birkhäuser/Springer, New York (2013) · Zbl 1268.46002 · doi:10.1007/978-3-0348-0548-3
[33] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011) · Zbl 1222.46002 · doi:10.1007/978-3-642-18363-8
[34] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 1: Variable Exponent Lebesgue and Amalgam Spaces, Vol. 248 of Operator Theory: Advances and Applications, Birkhäuser Basel, (2016) · Zbl 1385.47001
[35] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 2: Variable Exponent Hölder, Morrey-Campanato and Grand Spaces, Vol. 249 of Operator Theory: Advances and Applications, (2016) · Zbl 1367.47004
[36] Cruz-Uribe, D., Fiorenza, A., Martell, J., Pérez, C.: The boundedness of classical operators on variable \[L^p\] Lp spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239-264 (2006) · Zbl 1100.42012
[37] Rafeiro, H., Samko, S.: On maximal and potential operators with rough kernels in variable exponent spaces. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27(3), 309-325 (2016) · Zbl 1344.42016 · doi:10.4171/RLM/736
[38] Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[39] Berberian, S. K.: Lectures in functional analysis and operator theory. Springer, New York-Heidelberg, (1974), graduate Texts in Mathematics, No. 15 · Zbl 0296.46002
[40] Kolmogoroff, A.: Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes. Stud. Math. 5, 29-33 (1934) · Zbl 0010.18202 · doi:10.4064/sm-5-1-29-33
[41] Hästö, P.A.: The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 269(12), 4038-4048 (2015) · Zbl 1338.47032 · doi:10.1016/j.jfa.2015.10.002
[42] Hästö, P.A.: Corrigendum to The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 271(1), 240-243 (2016) · Zbl 1460.47014 · doi:10.1016/j.jfa.2016.04.005
[43] Guliyev, V.S., Hasanov, J.J., Samko, S.G.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces. Math. Scand. 107(2), 285-304 (2010) · Zbl 1213.42077 · doi:10.7146/math.scand.a-15156
[44] Karapetyants, N.K., Samko, N.: Weighted theorems on fractional integrals in the generalized Hölder spaces via indices \[m_\omega\] mω and \[M_\omega\] Mω. Fract. Calc. Appl. Anal. 7(4), 437-458 (2004) · Zbl 1114.26005
[45] Deringoz, F., Guliyev, V. S., Samko, S.: Boundedness of the maximal and singular operators on generalized Orlicz-Morrey spaces. In: Operator theory, operator algebras and applications. Selected papers based on the presentations at the workshop WOAT 2012, Lisbon, Portugal, September 11-14, 2012, Basel: Birkhäuser/Springer, 2014, pp. 139-158 · Zbl 1318.42015
[46] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137(1), 76-96 (2013) · Zbl 1267.46045 · doi:10.1016/j.bulsci.2012.03.008
[47] Guliyev, V., Hasanov, J.J., Samko, S.G.: Maximal, potential and singular operators in the local complementary variable exponent Morrey type spaces. J. Math. Anal. Appl. 401(1), 72-84 (2013) · Zbl 1261.42037 · doi:10.1016/j.jmaa.2012.03.041
[48] Samko, S.: Variable exponent Herz spaces. Mediterr. J. Math. 10(4), 2007-2025 (2013) · Zbl 1285.46027 · doi:10.1007/s00009-013-0285-x
[49] Rafeiro, H., Samko, S.: Riesz potential operator in continual variable exponents Herz spaces. Math. Nachr. 288(4), 465-475 (2015) · Zbl 1325.46034 · doi:10.1002/mana.201300270
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.