×

Optimal flight trajectories for the validation of aerodynamic models. (English) Zbl 1106.62079

Summary: For the validation of aerodynamic models, certain flight trajectories have to be chosen. In the current paper, the methodology of optimum experimental design is employed for the solution of this task. Aerodynamic models are highly nonlinear and so far no optimum experimental design approaches have been applied to them. We show that the methods of optimum experimental design are efficiently applicable to such models and considerably improve the statistical accuracy of the parameter estimates.

MSC:

62K05 Optimal statistical designs
76G25 General aerodynamics and subsonic flows
62P30 Applications of statistics in engineering and industry; control charts
62P35 Applications of statistics to physics
65K10 Numerical optimization and variational techniques

Software:

NPSOL; VPLAN
Full Text: DOI

References:

[1] Pukelsheim F., Wiley Series in Probability and Mathematical Statistics (1993)
[2] Atkinson A. C., Oxford Statistical Science Series (1992)
[3] Bauer I., Journal of Computational and Applied Mathematics 120 pp 1– (2000) · Zbl 0998.65083 · doi:10.1016/S0377-0427(00)00300-9
[4] Hilf K.-D., Meß-, Steuerungs- und Regelungstechnik 590 (1996)
[5] Lohmann T. W., Ein numerisches Verfahren zur Berechnung optimaler Versuchspläne für beschränkte Parameteridentifizierungsprobleme (1993) · Zbl 0779.65094
[6] Lohmann T. W., Industrial and Engineering Chemistry Research 31 pp 54– (1992) · doi:10.1021/ie00001a008
[7] Körkel, S. 2002. ”Numerische methoden für optimale versuchsplanungsprobleme bei nichtlinearen DAE-Modellen”. Universität Heidelberg. PhD thesis · Zbl 1011.62076
[8] Körkel S., Scientific Computing in Chemical Engineering 2 pp 338– (1999)
[9] Körkel S., Optimization Methods and Software (OMS) Journal 19 pp 327– (2004) · Zbl 1060.49025 · doi:10.1080/10556780410001683078
[10] Betts J. T., Advances in Design and Control, Society for Industrial and Applied Mathematics (2001)
[11] Bock H. G., Springer Series in Chemical Physics, no. 18, in: Modelling of Chemical Reaction Systems (1981)
[12] Bock, H. G. Recent advances in parameter identification techniques for ODE. Proceedings of International Workshop on Numerical Treatment of Inverse Problems in Differential and Inverse Equations. Progress in Scientific Computing. Vol. 2, pp.95–121. Boston: Birkhäuser.
[13] Bock H. G., Bonner Mathematische Schriften 183 (1987)
[14] Bryson A. E., Journal of Aircraft 6 pp 481– (1969) · doi:10.2514/3.44093
[15] Schulz V. H., SIAM Journal on Scientific Computing 19 pp 440– (1998) · Zbl 0947.65096 · doi:10.1137/S1064827594261917
[16] Bock, H. G. and Plitt, K.J. A multiple shooting algorithm for direct solution of constrained optimal control problems. Proceedings 9th IFAC World Congress Automatic Control. pp.242–274. Oxford: Pergamon Press.
[17] Schlöder J. P., Bonner Mathematische Schriften 187 (1988)
[18] Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. 1986. ”User’s guide for NPSOL (Version 4.0)”. Department of Operations Research, Stanford University. (Report SOL 86-2)
[19] Bader G., A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Technical Report 114 (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.