×

From hybrid automata to DAE-based modeling. (English) Zbl 1528.68174

Raskin, Jean-François (ed.) et al., Principles of systems design. Essays dedicated to Thomas A. Henzinger on the occasion of his 60th birthday. Cham: Springer. Lect. Notes Comput. Sci. 13660, 3-20 (2022).
Summary: Tom Henzinger was among the co-founders of the paradigm of hybrid automata in 1992. Hybrid automata possess different locations, holding different ODE-based dynamics; exit conditions from a location trigger transitions, resulting in starting conditions for the next location. A large research activity was developed in the formal verification of hybrid automata; this paradigm still grounds popular commercial tools such as Stateflow for Simulink.
However, modeling from first principles of physics requires a different approach: balance equations and conservation laws play a central role, and elementary physical components come with no prespecified input/output profile. All of this leads to grounding physical modeling on DAEs (Differential Algebraic Equations, of the form \(f(x',x,v)=0\)) instead of ODEs. DAE-based modeling, implemented for example in the Modelica language, allows for modularity and reuse of models.
Unsurprisingly, DAE-based hybrid systems (also known as multimode DAE systems) emerge as the central paradigm in multiphysics modeling. Despite the growing popularity of modeling tools based on this paradigm, fundamental problems remain in the handling of multiple modes and mode changes – corresponding to multiple locations and transitions in hybrid automata. Deep symbolic analyses (grouped under the term “structural analysis” in the related community), grounded on solid foundations, are required to generate simulation code. This paper reviews the issues related to multimode DAE systems and proposes algorithms for their analysis. Computer science is instrumental in these works, with a lot to offer to the simulation scientific community.
For the entire collection see [Zbl 1516.68022].

MSC:

68Q45 Formal languages and automata
03H10 Other applications of nonstandard models (economics, physics, etc.)
34A09 Implicit ordinary differential equations, differential-algebraic equations
93-10 Mathematical modeling or simulation for problems pertaining to systems and control theory
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)

References:

[1] Alur, R.; Courcoubetis, C.; Henzinger, TA; Ho, P-H; Grossman, RL; Nerode, A.; Ravn, AP; Rischel, H., Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems, Hybrid Systems, 209-229 (1993), Heidelberg: Springer, Heidelberg · doi:10.1007/3-540-57318-6_30
[2] Benveniste, A.; Bourke, T.; Caillaud, B.; Colaço, J.; Pasteur, C.; Pouzet, M., Building a hybrid systems modeler on synchronous languages principles, Proc. IEEE, 106, 9, 1568-1592 (2018) · doi:10.1109/JPROC.2018.2858016
[3] Benveniste, A.; Bourke, T.; Caillaud, B.; Pouzet, M., Nonstandard semantics of hybrid systems modelers, J. Comput. Syst. Sci., 78, 3, 877-910 (2012) · Zbl 1244.68050 · doi:10.1016/j.jcss.2011.08.009
[4] Benveniste, A.; Caillaud, B.; Elmqvist, H.; Ghorbal, K.; Otter, M.; Pouzet, M.; Steffen, B.; Woeginger, G., Multi-mode DAE models - challenges, theory and implementation, Computing and Software Science, 283-310 (2019), Cham: Springer, Cham · Zbl 1485.93206 · doi:10.1007/978-3-319-91908-9_16
[5] Benveniste, A.; Caillaud, B.; Malandain, M., The mathematical foundations of physical systems modeling languages, Ann. Rev. Control, 50, 72-118 (2020) · doi:10.1016/j.arcontrol.2020.08.001
[6] Benveniste, A., Caillaud, B., Malandain, M.: Structural analysis of multimode DAE systems: summary of results. CoRR, abs/2101.05702 (2021)
[7] Benveniste, A., The synchronous languages 12 years later, Proc. IEEE, 91, 1, 64-83 (2003) · doi:10.1109/JPROC.2002.805826
[8] Broenink, J., Wijbrans, K.: Describing discontinuities in bond graphs. In: Proceedings of the 1st International Conference on Bond Graph Modeling. SCS Simulation Series, vol. 25, no. 2. (1993)
[9] Caillaud, B., Malandain, M., Thibault, J.: Implicit structural analysis of multimode DAE systems. In: Ames, A.D., Seshia, S.A., Deshmukh, J. (eds.) HSCC 2020: 23rd ACM International Conference on Hybrid Systems: Computation and Control, Sydney, New South Wales, Australia, 21-24 April 2020, pp. 20:1-20:11. ACM (2020) · Zbl 07300861
[10] Campbell, SL; Gear, CW, The index of general nonlinear DAEs, Numer. Math., 72, 173-196 (1995) · Zbl 0844.34007 · doi:10.1007/s002110050165
[11] Dassault Systèmes AB. Dymola official webpage. https://www.3ds.com/products-services/catia/products/dymola/. Accessed 01 June 2022
[12] Elmqvist, H.: A structured model language for large continuous systems, Ph.D. Lund University (1978)
[13] Elmqvist, H., Mattsson, S.-E., Otter, M.: Modelica extensions for multi-mode DAE systems. In: Tummescheit, H., Arzèn, K.-E. (eds.) Proceedings of the 10th International Modelica Conference, Lund, Sweden. Modelica Association, September 2014
[14] Elmqvist, H., Otter, M.: Modiamath webpage. https://modiasim.github.io/ModiaMath.jl/stable/index.html. Accessed 01 June 2022
[15] Fritzson, P., The OpenModelica integrated environment for modeling, simulation, and model-based development, Model. Identif. Control, 41, 4, 241-295 (2020) · doi:10.4173/mic.2020.4.1
[16] Heemels, W.; Camlibel, M.; Schumacher, J., On the dynamic analysis of piecewise-linear networks, IEEE Trans. Circuits Syst. I-Regul. Pap., 49, 315-327 (2002) · Zbl 1368.93280 · doi:10.1109/81.989165
[17] Henzinger, TA; Ho, P-H; Antsaklis, P.; Kohn, W.; Nerode, A.; Sastry, S., HyTech: the cornell hybrid technology tool, Hybrid Systems II, 265-293 (1995), Heidelberg: Springer, Heidelberg · doi:10.1007/3-540-60472-3_14
[18] Höger, C.: Dynamic structural analysis for DAEs. In: Proceedings of the 2014 Summer Simulation Multiconference, SummerSim 2014, Monterey, CA, USA, 6-10 July 2014, p. 12 (2014)
[19] Höger, C.: Elaborate control: variable-structure modeling from an operational perspective. In: Proceedings of the 8th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, EOOLT 2017, Weßling, Germany, 1 December 2017, pp. 51-60 (2017)
[20] Liberzon, D.; Trenn, S., Switched nonlinear differential algebraic equations: Solution theory, Lyapunov functions, and stability, Automatica, 48, 5, 954-963 (2012) · Zbl 1246.93064 · doi:10.1016/j.automatica.2012.02.041
[21] Lindstrøm, T.: An invitation to nonstandard analysis. In: Cutland, N. (eds.) Nonstandard Analysis and its Applications, pp. 1-105. Cambridge Univ. Press, Cambridge (1988) · Zbl 0658.03044
[22] Mattsson, SE; Söderlind, G., Index reduction in differential-algebraic equations using dummy derivatives, Siam J. Sci. Comput., 14, 3, 677-692 (1993) · Zbl 0785.65080 · doi:10.1137/0914043
[23] Pantelides, C., The consistent initialization of differential-algebraic systems, SIAM J. Sci. Stat. Comput., 9, 2, 213-231 (1988) · Zbl 0643.65039 · doi:10.1137/0909014
[24] Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (2008) · Zbl 0922.70001
[25] Pryce, JD, A simple structural analysis method for DAEs, BIT, 41, 2, 364-394 (2001) · Zbl 0989.34005 · doi:10.1023/A:1021998624799
[26] Robinson, A.: Nonstandard Analysis. Princeton Landmarks in Mathematics (1996). ISBN 0-691-04490-2 · Zbl 0843.26012
[27] Thoma, J.: Introduction to bond graphs and their applications. In: Pergamon International Library of Science, Technology, Engineering and Social Studies. Pergamon Press (1975)
[28] Trenn, S.: Distributional differential algebraic equations. Ph.D. thesis, Technischen Universität Ilmenau (2009) · Zbl 1360.34002
[29] Trenn, S., Regularity of distributional differential algebraic equations, MCSS, 21, 3, 229-264 (2009) · Zbl 1217.34014
[30] Utkin, V.: Sliding mode control in mechanical systems. In: 20th International Conference on Industrial Electronics, Control and Instrumentation, IECON 1994, vol. 3, pp. 1429-1431, September 1994
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.