×

Integral reduction with Kira 2.0 and finite field methods. (English) Zbl 1523.81078

Summary: We present the new version 2.0 of the Feynman integral reduction program Kira and describe the new features. The primary new feature is the reconstruction of the final coefficients in integration-by-parts reductions by means of finite field methods with the help of FireFly. This procedure can be parallelized on computer clusters with MPI. Furthermore, the support for user-provided systems of equations has been significantly improved. This mode provides the flexibility to integrate Kira into projects that employ specialized reduction formulas, direct reduction of amplitudes, or to problems involving linear system of equations not limited to relations among standard Feynman integrals. We show examples from state-of-the-art Feynman integral reduction problems and provide benchmarks of the new features, demonstrating significantly reduced main memory usage and improved performance w.r.t. previous versions of Kira.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81S40 Path integrals in quantum mechanics
81T33 Dimensional compactification in quantum field theory
03H15 Nonstandard models of arithmetic
68W30 Symbolic computation and algebraic computation

References:

[1] Amoroso, S., (11th Les Houches Workshop on Physics at TeV Colliders: PhysTeV Les Houches (2020)), 3
[2] Henn, J. M., Phys. Rev. Lett., 110, Article 251601 pp. (2013)
[3] Argeri, M.; Di Vita, S.; Mastrolia, P.; Mirabella, E.; Schlenk, J.; Schubert, U., J. High Energy Phys., 03, Article 082 pp. (2014) · Zbl 1333.81379
[4] von Manteuffel, A.; Panzer, E.; Schabinger, R. M., Phys. Rev. D, 93, Article 125014 pp. (2016)
[5] Moriello, F., J. High Energy Phys., 01, Article 150 pp. (2020)
[6] Hidding, M., DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions · Zbl 1518.65150
[7] Gluza, J.; Kajda, K.; Kosower, D. A., Phys. Rev. D, 83, Article 045012 pp. (2011)
[8] Schabinger, R. M., J. High Energy Phys., 01, Article 077 pp. (2012)
[9] Ita, H., Phys. Rev. D, 94, Article 116015 pp. (2016)
[10] Böhm, J.; Georgoudis, A.; Larsen, K. J.; Schulze, M.; Zhang, Y., Phys. Rev. D, 98, Article 025023 pp. (2018)
[11] Kosower, D. A., Phys. Rev. D, 98, Article 025008 pp. (2018)
[12] von Manteuffel, A.; Panzer, E.; Schabinger, R. M., Phys. Rev. Lett., 124, Article 162001 pp. (2020)
[13] Larsen, K. J.; Zhang, Y., Phys. Rev. D, 93, Article 041701 pp. (2016)
[14] Böhm, J.; Georgoudis, A.; Larsen, K. J.; Schönemann, H.; Zhang, Y., J. High Energy Phys., 09, Article 024 pp. (2018) · Zbl 1398.81264
[15] Bendle, D.; Böhm, J.; Decker, W.; Georgoudis, A.; Pfreundt, F.-J.; Rahn, M., J. High Energy Phys., 02, Article 079 pp. (2020)
[16] Mastrolia, P.; Mizera, S., J. High Energy Phys., 02, Article 139 pp. (2019)
[17] Frellesvig, H.; Gasparotto, F.; Laporta, S.; Mandal, M. K.; Mastrolia, P.; Mattiazzi, L., J. High Energy Phys., 05, Article 153 pp. (2019) · Zbl 1416.81198
[18] Frellesvig, H.; Gasparotto, F.; Mandal, M. K.; Mastrolia, P.; Mattiazzi, L.; Mizera, S., Phys. Rev. Lett., 123, Article 201602 pp. (2019)
[19] Weinzierl, S., On the computation of intersection numbers for twisted cocycles · Zbl 1469.81050
[20] Frellesvig, H.; Gasparotto, F.; Laporta, S.; Mandal, M. K.; Mastrolia, P.; Mattiazzi, L., Decomposition of Feynman integrals by multivariate intersection numbers · Zbl 1461.81044
[21] von Manteuffel, A.; Schabinger, R. M., Phys. Lett. B, 744, 101 (2015) · Zbl 1330.81151
[22] Peraro, T., J. High Energy Phys., 12, Article 030 pp. (2016)
[23] Smirnov, A. V.; Chukharev, F. S., Comput. Phys. Commun., 247, Article 106877 pp. (2020) · Zbl 1510.81007
[24] Klappert, J.; Lange, F., Comput. Phys. Commun., 247, Article 106951 pp. (2020) · Zbl 1509.68342
[25] Peraro, T., J. High Energy Phys., 07, Article 031 pp. (2019)
[26] Klappert, J.; Klein, S. Y.; Lange, F., Comput. Phys. Commun., 264, Article 107968 pp. (2021) · Zbl 1524.65056
[27] Liu, X.; Ma, Y.-Q.; Wang, C.-Y., Phys. Lett. B, 779, 353 (2018)
[28] Liu, X.; Ma, Y.-Q., Phys. Rev. D, 99, Article 071501 pp. (2019)
[29] Wang, Y.; Li, Z.; ul Basat, N., Phys. Rev. D, 101, Article 076023 pp. (2020)
[30] Guan, X.; Liu, X.; Ma, Y.-Q., Chin. Phys. C, 44, Article 093106 pp. (2020)
[31] Laporta, S., Int. J. Mod. Phys. A, 15, 5087 (2000) · Zbl 0973.81082
[32] Anastasiou, C.; Lazopoulos, A., J. High Energy Phys., 07, Article 046 pp. (2004)
[33] von Manteuffel, A.; Studerus, C., Reduze 2 - distributed Feynman integral reduction
[34] Smirnov, A. V., Comput. Phys. Commun., 189, 182 (2015) · Zbl 1344.81030
[35] Maierhöfer, P.; Usovitsch, J.; Uwer, P., Comput. Phys. Commun., 230, 99 (2018) · Zbl 1498.81004
[36] Message passing interface · Zbl 0825.68198
[37] Harlander, R. V.; Kluth, Y.; Lange, F., Eur. Phys. J. C, 78, 944 (2018)
[38] Artz, J.; Harlander, R. V.; Lange, F.; Neumann, T.; Prausa, M., J. High Energy Phys., 06, Article 121 pp. (2019) · Zbl 1445.81069
[39] Harlander, R. V.; Lange, F.; Neumann, T., J. High Energy Phys., 08, Article 109 pp. (2020)
[40] Tkachov, F. V., Phys. Lett. B, 100, 65 (1981)
[41] Chetyrkin, K. G.; Tkachov, F. V., Nucl. Phys. B, 192, 159 (1981)
[42] Gehrmann, T.; Remiddi, E., Nucl. Phys. B, 580, 485 (2000) · Zbl 1071.81089
[43] Lewis, R. H., Computer algebra system Fermat
[44] Kauers, M., Nucl. Phys. B, Proc. Suppl., 183, 245 (2008)
[45] Kant, P., Comput. Phys. Commun., 185, 1473 (2014) · Zbl 1344.81020
[46] de Kleine, J.; Monagan, M.; Wittkopf, A., Proc. Int. Symp. Symb. Algebraic Comp., 2005, 124 (2005)
[47] Zippel, R., Symb. Algebraic Comp. EUROSAM, 1979, 216 (1979)
[48] Ben-Or, M.; Tiwari, P., Proc. ACM Symp. Theory Comp., 20, 301 (1988)
[49] Kaltofen, E.; Y., Lakshman, Symb. Algebraic Comp. ISSAC, 1988, 467 (1989)
[50] Zippel, R., J. Symb. Comput., 9, 375 (1990) · Zbl 0702.65011
[51] Kaltofen, E.; Lee, W.-s.; Lobo, A. A., (Proc. Int. Symp. Symbolic Algebraic Comp.. Proc. Int. Symp. Symbolic Algebraic Comp., 2000 (2000)), 192
[52] Kaltofen, E.; Lee, W.-s., J. Symb. Comput., 36, 365 (2003) · Zbl 1074.68080
[53] Cuyt, A.; Lee, W.-s., Theor. Comput. Sci., 412, 1445 (2011) · Zbl 1211.65014
[54] Wang, P. S., (Proc. ACM Symp. Symbolic Algebraic Comp.. Proc. ACM Symp. Symbolic Algebraic Comp., 1981 (1981)), 212 · Zbl 0486.68026
[55] Monagan, M., Proc. Int. Symp. Symb. Algebraic Comp., 2004, 243 (2004)
[56] von zur Gathen, J.; Gerhard, J., Modern Computer Algebra (2013), Cambridge University Press · Zbl 1277.68002
[57] DeMillo, R. A.; Lipton, R. J., Inf. Process. Lett., 7, 193 (1978) · Zbl 0397.68011
[58] Schwartz, J. T., J. ACM, 27, 701 (1980) · Zbl 0452.68050
[59] Evans, J., Jemalloc memory allocator
[60] Maierhöfer, P.; Usovitsch, J., Kira 1.1 release notes · Zbl 1498.81004
[61] Maierhöfer, P.; Usovitsch, J., Kira 1.2, Release Notes · Zbl 1498.81004
[62] Sabbah, C., Bull. Soc. Math. Fr., 120, 371 (1992) · Zbl 0766.32011
[63] Smirnov, A. V.; Smirnov, V. A., Nucl. Phys. B, 960, Article 115213 pp. (2020) · Zbl 1472.81102
[64] Usovitsch, J., Factorization of denominators in integration-by-parts reductions
[65] Papadopoulos, C. G.; Tommasini, D.; Wever, C., J. High Energy Phys., 01, Article 072 pp. (2015)
[66] Hidding, M.; Moriello, F., J. High Energy Phys., 01, Article 169 pp. (2019) · Zbl 1409.81048
[67] Papadopoulos, C. G.; Wever, C., J. High Energy Phys., 02, Article 112 pp. (2020)
[68] Grozin, A. G., Springer Tracts Mod. Phys., 201, 1 (2004)
[69] Frellesvig, H.; Bonciani, R.; Del Duca, V.; Moriello, F.; Henn, J.; Smirnov, V., PoS, LL2018, Article 076 pp. (2018)
[70] Corporation, Intel, Intel® MPI library
[71] Pakkanen, J., The meson build system
[72] Martin, E., Ninja · Zbl 1030.68017
[73] Autotools
[74] Bauer, C.; Frink, A.; Kreckel, R. B., GiNaC is not a CAS
[75] Bauer, C.; Frink, A.; Kreckel, R., J. Symb. Comput., 33, 1 (2002) · Zbl 1017.68163
[76] Vollinga, J., Nucl. Instrum. Meth. A, 559, 282 (2006)
[77] Haible, B.; Kreckel, R. B., CLN - class library for numbers
[78] Gailly, J.-l.; Adler, M., zlib
[79] GNU multiple precision arithmetic library
[80] GNU multiple precision floating-point reliable library
[81] Beder, J., yaml-cpp
[82] Hart, W., FLINT: fast library for number theory
[83] Gabriel, E., Open source high performance computing
[84] Gabriel, E., (Adv. Parallel Virtual Machine Message Passing Interface. EuroPVM/MPI, vol. 2004 (2004)), 97
[85] Gropp, W., MPICH
[86] Ellis, J. P., Comput. Phys. Commun., 210, 103 (2017) · Zbl 1376.68154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.