×

Very flat, locally very flat, and contraadjusted modules. (English) Zbl 1348.13018

The authors study very flat and contraadjusted modules (introduced by L. Positselski [“Contraherent cosheaves”, Preprint, arXiv:1209.2995v5]) over a commutative ring. Here is their abstract:
“Very flat and contraadjusted modules naturally arise in algebraic geometry in the study of contraherent cosheaves over schemes. Here, we investigate the structure and approximation properties of these modules over commutative noetherian rings. Using an analogy between projective and flat Mittag-Leffler modules on one hand, and very flat and locally very flat modules on the other, we prove that each of the following statements are equivalent to the finiteness of the Zariski spectrum \mathrm{Spec}\((R)\) of a noetherian domain \(R\): (i) the class of all very flat modules is covering, (ii) the class of all locally very flat modules is precovering, and (iii) the class of all contraadjusted modules is enveloping. We also prove an analog of Pontryagin’s Criterion for locally very flat modules over Dedekind domains.”
Thus the authors prove that a module \(M\) over a Dedekind domain \(R\) is locally very flat if and only if each finite rank submodule of \(M\) is very flat.

MSC:

13C11 Injective and flat modules and ideals in commutative rings
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
13E05 Commutative Noetherian rings and modules
13G05 Integral domains

References:

[1] Angeleri, L.; Šaroch, J.; Trlifaj, J., Approximations and Mittag-Leffler conditions, preprint, available at · Zbl 1432.16009
[2] Bican, L.; El Bashir, R.; Enochs, E. E., All modules have flat covers, Bull. Lond. Math. Soc., 33, 385-390 (2001) · Zbl 1029.16002
[3] Eklof, P. C.; Mekler, A. H., Almost Free Modules (2002), North-Holland: North-Holland New York · Zbl 1054.20037
[4] Enochs, E. E.; Estrada, S., Relative homological algebra in the category of quasi-coherent sheaves, Adv. Math., 194, 284-295 (2005) · Zbl 1090.16003
[5] Enochs, E. E.; Jenda, O. M.G., Relative Homological Algebra (2011), W. de Guyter: W. de Guyter Berlin · Zbl 1238.13002
[6] Eklof, P.; Trlifaj, J., How to make Ext vanish, Bull. Lond. Math. Soc., 33, 41-51 (2001) · Zbl 1030.16004
[7] Göbel, R.; Trlifaj, J., Cotilting and a hierarchy of almost cotorsion groups, J. Algebra, 224, 110-122 (2000) · Zbl 0947.20036
[8] Göbel, R.; Trlifaj, J., Approximations and Endomorphism Algebras of Modules (2012), W. de Guyter: W. de Guyter Berlin · Zbl 1292.16001
[9] Goodearl, K. R., Von Neumann Regular Rings (1991), Krieger: Krieger Malabar · Zbl 0749.16001
[10] Goodearl, K. R.; Warfield, R., An Introduction to Noncommutative Noetherian Rings, LMSST, vol. 61 (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1101.16001
[11] Hovey, M., Cotorsion pairs, model category structures and representation theory, Math. Z., 241, 553-559 (2002) · Zbl 1016.55010
[12] Kaplansky, I., Commutative Rings (1970), Allyn and Bacon Inc.: Allyn and Bacon Inc. Boston · Zbl 0203.34601
[13] Matsumura, H., Commutative Ring Theory, CSAM, vol. 8 (1994), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[14] Nunke, R. J., Modules of extensions over Dedekind rings, Ill. J. Math., 3, 221-241 (1959) · Zbl 0087.26603
[15] Positselski, L., Contraherent cosheaves, preprint, available at
[16] Raynaud, M.; Gruson, L., Critères de platitude et de projectivité, Invent. Math., 13, 1-89 (1971) · Zbl 0227.14010
[17] Stenström, B., Rings of Quotients, Grund. Math. Wiss., vol. 217 (1975), Springer: Springer New York · Zbl 0296.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.