×

Pesenti-Szpiro inequality for optimal elliptic curves. (English) Zbl 1084.11027

Let \(E\) be an elliptic curve over the rational function field \({\mathbb F}_q(t)\) with non-constant \(j\)-invariant \(j_E\). A theorem by J. Pesenti and L. Szpiro, proved in [Compositio Math. 120, No. 1, 83–117 (2000; Zbl 1021.11021)] for general function fields, says that in this special case the minimal discriminant \({\mathcal D}_E\) of \(E\) can be bounded by \[ \deg {\mathcal D}_E\leq 6 \deg_{ns}(j_E)\cdot (\deg {\mathfrak n}_E -2) \] where \({\mathfrak n}_E\) is the conductor of \(E\) and \(\deg_{ns}(j_E)\) is the inseparability degree of the map \(j_E\).
In general it is not possible to get rid of the annoying factor \(\deg_{ns}(j_E)\), as can be easily seen by applying the Frobenius isogeny to a given curve \(E\).
Now suppose that \(E\) has split multiplicative reduction at the place \(\infty=\frac{1}{t}\) of \({\mathbb F}_q(t)\). Then it is known that there exists a non-constant map from the Drinfeld modular curve \(X_0({\mathfrak n})\) to \(E\) where \({\mathfrak n}\in{\mathbb F}_q[t]\) with \({\mathfrak n}_E=(\infty)\cdot({\mathfrak n})\).
\(E\) is called a strong Weil curve (or an optimal elliptic curve in this paper) if this map does not factor through another elliptic curve.
The main results of the paper are about such optimal elliptic curves, namely: Theorem 1.2 which says that if \({\mathfrak n}\) is irreducible, then \(j_E\) is separable and hence \[ \deg {\mathcal D}_E\leq 6(\deg {\mathfrak n} -1); \] and Theorem 1.3 which for general \({\mathfrak n}\) gives an upper bound for \(\deg_{ns}(j_E)\) (and hence for \(\deg {\mathcal D}_E\)) only in terms of \(q\) and \(\deg {\mathfrak n}\).
The author shows that if \({\mathfrak n}\) is irreducible, then \(ord_{\mathfrak n}(j_E)\) is not divisible by the characteristic of \({\mathbb F}_q\). The proof of this easily stated fact (which immediately implies Theorem 1.2) is obtained from the rigid-analytic uniformization of the Jacobian of \(X_0({\mathfrak n})\) over the \({\mathfrak n}\)-adic completion of \({\mathbb F}_q(t)\) and requires high-powered machinery.
Theorem 1.3 is proved by relating \(ord_{\infty}(j_E)\) to the degree of the uniformization \(X_0({\mathfrak n})\to E\) and a special value of an \(L\)-function, which is estimated in an appendix.
We also mention that in a subsequent paper [Abelian subvarieties of Drinfeld Jacobians and congruences modulo the characteristic, preprint Saarbrücken (2005)] the author proves, among other results, that Theorem 1.2 remains true under the weaker assumption that \({\mathfrak n}\) is square-free, i.e. for all semistable optimal elliptic curves curves over \({\mathbb F}_q(t)\).
On the other hand, examples show that \(j_E\) need not be separable if \({\mathfrak n}\) has a multiple factor.

MSC:

11G05 Elliptic curves over global fields
11G18 Arithmetic aspects of modular and Shimura varieties
14G22 Rigid analytic geometry

Citations:

Zbl 1021.11021
Full Text: DOI

References:

[1] Bosch, S.; Lütkebohmert, W., Degenerating abelian varieties, Topology, 30, 653-698 (1991) · Zbl 0761.14015
[2] Bosch, S.; Lütkebohmert, W., Formal and rigid geometry I, Math. Ann., 295, 291-317 (1993) · Zbl 0808.14017
[3] Bosch, S.; Lütkebohmert, W.; Raynaud, M., Néron Models (1990), Springer: Springer Berlin · Zbl 0705.14001
[4] Conrad, B., Irreducible components of rigid spaces, Ann. Inst. Fourier, 49, 473-541 (1999) · Zbl 0928.32011
[5] Conrad, B.; Stein, W., Component groups of purely toric quotients, Math. Res. Lett., 8, 745-766 (2001) · Zbl 1081.11040
[6] Cremona, J., The analytic order of \(Ш\) for modular elliptic curves, J. Théor. Nombres Bordeaux, 5, 179-184 (1993) · Zbl 0795.14016
[8] Deligne, P., La conjecture de Weil, II, Publ. Math. IHES, 52, 137-252 (1980) · Zbl 0456.14014
[10] Drinfeld, V., Elliptic modules, Math. Sbornik., 94, 594-627 (1974)
[11] Fresnel, J.; van der Put, M., Géométrie Analytique Rigide et Applications (1981), Birkhäuser: Birkhäuser Basel · Zbl 0479.14015
[12] Gekeler, E.-U., Über Drinfeld’sche Modulkurven vom Hecke-Typ, Compositio Math., 57, 219-236 (1986) · Zbl 0599.14032
[13] Gekeler, E.-U., Analytic construction of Weil curves over function fields, J. Théor. Nombres Bordeaux, 7, 27-49 (1995) · Zbl 0846.11037
[14] Gekeler, E.-U., Invariants of some algebraic curves related to Drinfeld modular curves, J. Number Theory, 90, 166-183 (2001) · Zbl 0979.11036
[15] Gekeler, E.-U.; Reversat, M., Jacobians of Drinfeld modular curves, J. Reine Angew. Math., 476, 27-93 (1996) · Zbl 0848.11029
[16] Grothendieck, A.; Raynaud, M.; Rim, D., Groupes de monodromie en géométrie algébrique, SGA 7-I, (Lecture Notes in Mathematics, vol. 288 (1972), Springer: Springer Berlin) · Zbl 0237.00013
[17] Laumon, G., Les constantes des équations fonctionnelles des fonctions \(L\) sur un corps global de caractéristique positive, C. R. Acad. Sci. Paris Sér. I Math., 298, 181-184 (1984) · Zbl 0567.14016
[18] Mai, L.; Ram Murty, M., The Phragmén-Lindelöf theorem and modular elliptic curves, Contemp. Math., 166, 335-340 (1994) · Zbl 0822.11047
[19] Mestre, J.-F.; Oesterlé, J., Courbes de Weil semi-stables de discriminant une puissance m-ième, J. Reine Angew. Math., 400, 173-184 (1989) · Zbl 0693.14004
[20] Mumford, D., Abelian Varieties (1970), Oxford University Press: Oxford University Press Oxford · Zbl 0198.25801
[21] Papikian, M., On the degree of modular parametrizations over function fields, J. Number Theory, 97, 317-349 (2002) · Zbl 1067.11034
[23] Pesenti, J.; Szpiro, L., Inégalite du discriminant pour les pinceaux elliptiques à réductions quelconques, Compositio Math., 120, 83-117 (2000) · Zbl 1021.11021
[24] Rademacher, H., On the Phragmén-Lindelöf theorem and some applications, Math. Z., 72, 192-204 (1959) · Zbl 0092.27703
[25] Silverman, J., Advanced topics in the arithmetic of elliptic curves, (Graduate Text in Mathematics, vol. 151 (1994), Springer: Springer Berlin) · Zbl 0911.14015
[26] Tamagawa, A., The Eisenstein quotient of the Jacobian variety of a Drinfeld modular curve, Publ. RIMS, 31, 204-246 (1995) · Zbl 1045.11510
[27] van der Put, M., A note on \(p\)-adic uniformization, Proc. Nederl. Akad. Wetensch., 90, 313-318 (1987) · Zbl 0624.32018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.