×

Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. (English) Zbl 1405.60122

Summary: We study contraction for the kinetic Fokker-Planck operator on the torus. Solving the stochastic differential equation, we show contraction and therefore exponential convergence in the Monge-Kantorovich-Wasserstein \(\mathcal{W}_2\) distance. Finally, we investigate if such a coupling can be obtained by a co-adapted coupling, and show that then the bound must depend on the square root of the initial distance.

MSC:

60J60 Diffusion processes
35Q84 Fokker-Planck equations
60H30 Applications of stochastic analysis (to PDEs, etc.)
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

References:

[1] F. Bolley; I. Gentil; A. Guillin, Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations, J. Funct. Anal., 263, 2430-2457 (2012) · Zbl 1253.35183 · doi:10.1016/j.jfa.2012.07.007
[2] F. Bolley; A. Guillin; F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, M2AN Math. Model. Numer. Anal., 44, 867-884 (2010) · Zbl 1201.82029 · doi:10.1051/m2an/2010045
[3] K. Burdzy; W. S. Kendall, Efficient Markovian couplings: Examples and counterexamples, Ann. Appl. Probab., 10, 362-409 (2000) · Zbl 1054.60077 · doi:10.1214/aoap/1019487348
[4] M. Chen, Optimal Markovian couplings and applications, Acta Math. Sinica (N. S.), 10 (1994), 260-275; A Chinese summary appears in Acta Math. Sinica, 38 (1995), p575. · Zbl 0813.60068
[5] S. Gadat; L. Miclo, Spectral decompositions and \(\begin{document} \mathbb{L}^2\end{document} \)-operator norms of toy hypocoercive semi-groups, Kinet. Relat. Models, 6, 317-372 (2013) · Zbl 1262.35134 · doi:10.3934/krm.2013.6.317
[6] F. Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46, 349-359 (2006) · Zbl 1096.35019
[7] F. Hérau; F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171, 151-218 (2004) · Zbl 1139.82323 · doi:10.1007/s00205-003-0276-3
[8] R. Jordan; D. Kinderlehrer; F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1-17 (1998) · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[9] W. S. Kendall, Coupling, local times, immersions, Bernoulli, 21, 1014-1046 (2015) · Zbl 1332.60118 · doi:10.3150/14-BEJ596
[10] K. Kuwada, Characterization of maximal Markovian couplings for diffusion processes, Electron. J. Probab., 14, 633-662 (2009) · Zbl 1191.60080 · doi:10.1214/EJP.v14-634
[11] S. Mischler; C. Mouhot, Exponential stability of slowly decaying solutions to the kinetic Fokker-Planck equation, Arch. Ration. Mech. Anal., 221, 677-723 (2016) · Zbl 1338.35430 · doi:10.1007/s00205-016-0972-4
[12] P. Mörters and Y. Peres, Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2010, URL http://books.google.co.uk/books?id=e-TbA-dSrzYC. · Zbl 1243.60002
[13] C. Mouhot; L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19, 969-998 (2006) · Zbl 1169.82306 · doi:10.1088/0951-7715/19/4/011
[14] D. Talay, Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Related Fields, 8 (2002), 163-198, Inhomogeneous random systems (Cergy-Pontoise, 2001). · Zbl 1011.60039
[15] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), ⅳ+141pp. · Zbl 1197.35004
[16] C. Villani, Optimal Transport: Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009. · Zbl 1156.53003
[17] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, USA, 2001, URL https://books.google.co.uk/books?id=4cI5136OdoMC. · Zbl 1267.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.