×

Multiseries Lie groups and asymptotic modules for characterizing and solving integrable models. (English) Zbl 0673.22009

Summary: A multiseries integrable model (MSIM) is defined as a family of compatible flows on an infinite-dimensional Lie group of N-tuples of formal series around N given poles on the Riemann sphere. Broad classes of solutions to a MSIM are characterized through modules over rings of rational functions, called asymptotic modules. Possible ways for constructing asymptotic modules are Riemann-Hilbert and \({\bar \partial}\) problems. When MSIM’s are written in terms of the “group coordinates”, some of them can be “contracted” into standard integrable models involving a small number of scalar functions only. Simple contractible MSIM’s corresponding to one pole, yield the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. Two-pole contractible MSIM’s are exhibited, which lead to a hierarchy of solvable systems of nonlinear differential equations consisting of \((2+1)\)-dimensional evolution equations and of quite strong differential constraints.

MSC:

22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
37C10 Dynamics induced by flows and semiflows
35Q99 Partial differential equations of mathematical physics and other areas of application
37N99 Applications of dynamical systems
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q15 Riemann-Hilbert problems in context of PDEs

References:

[1] DOI: 10.1007/BF02105350 · Zbl 0567.58009 · doi:10.1007/BF02105350
[2] DOI: 10.1007/BF02105350 · Zbl 0567.58009 · doi:10.1007/BF02105350
[3] DOI: 10.1002/sapm1974534249 · Zbl 0408.35068 · doi:10.1002/sapm1974534249
[4] DOI: 10.1016/0001-8708(84)90036-7 · Zbl 0587.35083 · doi:10.1016/0001-8708(84)90036-7
[5] Segal G., Publ. Math. de l’IHES 61 pp 1– (1985)
[6] DOI: 10.1016/0167-2789(86)90184-3 · Zbl 0619.35090 · doi:10.1016/0167-2789(86)90184-3
[7] DOI: 10.1016/0167-2789(86)90184-3 · Zbl 0619.35090 · doi:10.1016/0167-2789(86)90184-3
[8] DOI: 10.1007/BF01078388 · Zbl 0597.35115 · doi:10.1007/BF01078388
[9] DOI: 10.1088/0305-4470/21/14/002 · Zbl 0695.35183 · doi:10.1088/0305-4470/21/14/002
[10] DOI: 10.1088/0305-4470/21/14/002 · Zbl 0695.35183 · doi:10.1088/0305-4470/21/14/002
[11] DOI: 10.1088/0305-4470/21/14/002 · Zbl 0695.35183 · doi:10.1088/0305-4470/21/14/002
[12] DOI: 10.1088/0305-4470/21/14/002 · Zbl 0695.35183 · doi:10.1088/0305-4470/21/14/002
[13] DOI: 10.1088/0305-4470/21/14/002 · Zbl 0695.35183 · doi:10.1088/0305-4470/21/14/002
[14] DOI: 10.1088/0305-4470/21/14/002 · Zbl 0695.35183 · doi:10.1088/0305-4470/21/14/002
[15] DOI: 10.1063/1.527768 · Zbl 0637.58045 · doi:10.1063/1.527768
[16] DOI: 10.1063/1.527768 · Zbl 0637.58045 · doi:10.1063/1.527768
[17] DOI: 10.1063/1.527768 · Zbl 0637.58045 · doi:10.1063/1.527768
[18] DOI: 10.1063/1.527768 · Zbl 0637.58045 · doi:10.1063/1.527768
[19] DOI: 10.1063/1.527768 · Zbl 0637.58045 · doi:10.1063/1.527768
[20] DOI: 10.1098/rsta.1985.0047 · Zbl 0582.35103 · doi:10.1098/rsta.1985.0047
[21] DOI: 10.1098/rsta.1985.0047 · Zbl 0582.35103 · doi:10.1098/rsta.1985.0047
[22] DOI: 10.1007/BF01077483 · Zbl 0448.35090 · doi:10.1007/BF01077483
[23] DOI: 10.1007/BF01389063 · Zbl 0442.58016 · doi:10.1007/BF01389063
[24] DOI: 10.1007/BF01389063 · Zbl 0442.58016 · doi:10.1007/BF01389063
[25] Drinfeld V. G., Sov. Math. Dokl. 27 pp 68– (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.