×

Hybrid simulated annealing and direct search method for nonlinear unconstrained global optimization. (English) Zbl 1065.90081

Summary: In this article we give a new approach of hybrid direct search methods with meta-heuristics of simulated annealing for finding a global minimum of a nonlinear function with continuous variables. First, we suggest a Simple Direct Search (SDS) method, which comes from some ideas of other well-known direct search methods. Since our goal is to find global minima and the SDS method is still a local search method, we hybridize it with the standard simulated annealing to design a new method, called Simplex Simulated Annealing (SSA) method, which is expected to have some ability to look for a global minimum. To obtain faster convergence, we first accelerate the cooling schedule in SSA, and in the final stage, we apply Kelley’s modification of the Nelder-Mead method on the best solutions found by the accelerated SSA method to improve the final results. We refer to this last method as the Direct Search Simulated Annealing (DSSA) method. The performance of SSA and DSSA is reported through extensive numerical experiments on some well-known functions. Comparing their performance with that of other meta-heuristics shows that SSA and DSSA are promising in practice. Especially, DSSA is shown to be very efficient and robust.

MSC:

90C59 Approximation methods and heuristics in mathematical programming
90C30 Nonlinear programming

Software:

KELLEY
Full Text: DOI

References:

[1] Al-Sultan K.S., European J. of Operational Research 103 pp 198– (1997) · Zbl 0922.90123 · doi:10.1016/S0377-2217(96)00282-2
[2] Bessaou M., Struct. Multidisc. Optim. 23 pp 63– (2001) · doi:10.1007/s00158-001-0166-y
[3] Cardoso M.F., Comput. Chem. Eng. 20 pp 1065– (1996) · doi:10.1016/0098-1354(95)00221-9
[4] Cardoso M.F., Comput. Chem. Eng. 21 pp 1349– (1997) · doi:10.1016/S0098-1354(97)00015-X
[5] Chelouah R., European J. of Operational Reasearch 123 pp 256– (2000) · Zbl 0961.90037 · doi:10.1016/S0377-2217(99)00255-6
[6] Chelouah R., An hybrid method using genetic algorithm and Nelder-Mead simplex algorithms for the global optimization · Zbl 1071.90035
[7] Chelouah R., An hybrid method combining continuous Tabu Search and Nelder-Mead simplex algorithms for the global optimization of multiminima functions · Zbl 1071.90035 · doi:10.1016/j.ejor.2003.08.053
[8] Dennis J.E., SIAM J. Optim. 1 pp 448– (1991) · Zbl 0754.90051 · doi:10.1137/0801027
[9] Floudas C.A., Recent Advances in Global Optimization (1992)
[10] Horst R., Handbook of Global Optimization (1995) · Zbl 0805.00009 · doi:10.1007/978-1-4615-2025-2
[11] Kelley C.T., SIAM J. Optim. 10 pp 43– (1999) · Zbl 0962.65048 · doi:10.1137/S1052623497315203
[12] Kelley C.T., Iterative methods for optimization. Frontiers Appl. Math 18 (1999) · Zbl 0934.90082 · doi:10.1137/1.9781611970920
[13] Kirkpatrick S., Science 220 pp 671– (1983) · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[14] Kvasnicka V., Chemometrics and Intelligent Laboratory Systems 39 pp 161– (1997) · doi:10.1016/S0169-7439(97)00071-3
[15] Laarhoven P.J., Simulated Annealing: Theory and Applications (1987) · doi:10.1007/978-94-015-7744-1
[16] McKinnon K.I.M., SIAM J. Optim. 9 pp 148– (1999) · Zbl 0962.65049 · doi:10.1137/S1052623496303482
[17] Neider J.A., Comput. J. 7 pp 308– (1965) · Zbl 0229.65053 · doi:10.1093/comjnl/7.4.308
[18] Osman I.H., Meta-Heuristics: Theory and Applications (1996) · doi:10.1007/978-1-4613-1361-8
[19] Pardalos P.M., Handbook of Global Optimization (2002) · Zbl 0991.00017 · doi:10.1007/978-1-4757-5362-2
[20] Pardalos P.M., Handbook of Applied Optimization (2002) · Zbl 0996.90001
[21] Press W.H., Comput. Phys. 5 pp 426– (1991) · doi:10.1063/1.4823002
[22] Siarry P., ACM Transactions on Mathematical Software 23 pp 209– (1997) · Zbl 0887.65067 · doi:10.1145/264029.264043
[23] Tseng P., SIAM J. Optim. 10 pp 269– (1999) · Zbl 1030.90122 · doi:10.1137/S1052623495282857
[24] Wang P.P., Computational Optimization and Applications 6 pp 59– (1996) · Zbl 0852.90120 · doi:10.1007/BF00248009
[25] Yen J., IEEE Trans, on Syst., Man, and Cybern. B 28 pp 173– (1998) · doi:10.1109/3477.662758
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.