×

General inequalities for quasideviation means. (English) Zbl 0652.26023

Let \(I_ j\subseteq {\mathbb{R}}\) \((j=0,1,...,m)\) be open intervals. The functions \(E_ j:\) \(I\) \(2_ j\to {\mathbb{R}}\) are quasideviations if \(t\mapsto E_ j(x,t)\) are continuous, \(sign E_ j(x,t)=sign(x-t(x) (x,t\in I_ j)\) and \(t\mapsto E_ j(y,t)/E_ j(x,t)\) are strictly increasing \((x,y\in I_ j,\quad x<t<y).\) Let \({\mathbf{x}}\quad j=(x_ 1^{(j)},...,x_ n^{(j)})\in I\quad n_ j,\) \(\mathbf{\lambda}=(\lambda_ 1,...,\lambda_ n)\in {\bar {\mathbb{R}}}\quad n_+\setminus \{0\};\) the unique solutions \(t_ j=M({\mathbf{x}}\quad j,\mathbf{\lambda};E_ j)\) of \(\sum^{n}_{k=1}\lambda_ kE_ j(x_ k^{(j)},t_ j)=0\quad (j=0,1,...,m)\) are quasideviation means.
The author’s main result is that, for arbitrary \(f:\quad I_ 1\times...\times I_ m\to I_ 0\) and arbitrary continuous \(F:\quad I_ 1\times...\times I_ m\to {\mathbb{R}},\) \[ M({\mathbf{f}}({\mathbf{x}}\quad 1,...,{\mathbf{x}}\quad m),\mathbf{\lambda};E_ 0)\quad \leq \quad F(M({\mathbf{x}}\quad 1,\mathbf{\lambda};E_ 1),...,M({\mathbf{x}}\quad m,\mathbf{\lambda};E_ m)), \] where f(x 1,...,x \(m)=(f(x_ 1^{(1)},...,x_ n^{(1)}),...,f(\) \(x_ 1^{(m)},...,x_ n^{(m)}))\), is equivalent to its special case \(\lambda\) \(=(1,...,1)\) and both are equivalent to the existence of \(G_ j:\quad I_ 1\times...\times I_ m\to {\mathbb{R}}\quad (j=1,...,m)\) such that \[ E_ 0(f(x_ 1,...,x_ m),F(t_ 1,...,t_ m))\quad \leq \quad \sum^{m}_{j=1}A_ j(t_ 1,...,t_ m)E_ j(x_ j,t_ j) \] for all \(x_ j,t_ j\in I_ j\) \((j=1,2,...,m)\). This is applied to several older (Hölder, Minkowski type) and newer inequalities (comparison of quasideviation means, in particular of homogeneous and/or differentiable ones).
Reviewer: J.Aczél

MSC:

26D15 Inequalities for sums, series and integrals
39B72 Systems of functional equations and inequalities
26A51 Convexity of real functions in one variable, generalizations

References:

[1] Aczél, J. andDaróczy, Z.,Über verallgemeinerte quasilineare Mittelwerte, die mit Gewichts funktionen gebildet sind. Publ. Math. Debrecen10 (1963), 171–190.
[2] Bajraktarevič, M. Sur une equation fonctionelle aux valeurs moyennes. Glasnik Math. Fiz. i Astr.13 (1958), 243–248. · Zbl 0084.34401
[3] Bajraktarevič, M.,Über die Vergleichbarkeit der mit Gewichtsfunktionen gebildeten Mittelwerte. Studia Sci. Math. Hungar.4 (1969), 3–8. · Zbl 0185.29503
[4] Beck, E. Über Ungleichungen von der Form f(M (x; {\(\alpha\)}), M {\(\psi\)} (y; {\(\alpha\)})) M x (f(x,y); {\(\alpha\)}). Univ. Beograd Publ. Elektrotechn. Fak. Ser. Mat. Fiz. No. 320–328 (1970), 1–14. · Zbl 0215.57201
[5] Beckenbach, E. F.,A class of mean value functions. Amer. Math. Monthly57 (1950), 1–6. · Zbl 0035.15704 · doi:10.2307/2305163
[6] Danskin, J. M.,Dresher’s inequality. Amer. Math. Monthly59 (1952), 687–688. · Zbl 0048.04001 · doi:10.2307/2307547
[7] Daróczy, Z.,Einige Ungleichungen über die mit Gewichtsfunktionen gebildeten Mittelwerte. Monatsh. Math.68 (1964), 102–112. · Zbl 0137.26302 · doi:10.1007/BF01307111
[8] Daróczy, Z.,Über eine Klasse von Mittelwerten. Publ. Math. Debrecen19 (1972), 211–217.
[9] Daróczy, Z.,A general inequality for means. Aequationes Math.7 (1972), 16–21. · Zbl 0242.26015 · doi:10.1007/BF01818688
[10] Daróczy, Z. andLosonczi, L.,Über den Vergleich von Mittelwerten. Publ. Math. Debrecen17 (1970), 289–297.
[11] Daróczy, Z. andPáles, Zs.,On comparison of mean values. Publ. Math. Debrecen29 (1982), 107–115. · Zbl 0508.26010
[12] Dresher, M.,Moment spaces and inequalities. Duke Math. J.20 (1953), 261–271. · Zbl 0050.28202 · doi:10.1215/S0012-7094-53-02026-2
[13] Hardy, G. H., Littlewood, J. E. andPólya, G. Inequalities. Cambridge University Press, Cambridge, 1952.
[14] Losonczi, L.,Subhomogene Mittelwerte. Acta Math. Hungar.22 (1971), 187–195. · Zbl 0226.26022 · doi:10.1007/BF01896007
[15] Losonczi, L.,Subadditive Mittelwerte. Arch. Math.22 (1971), 168–174. · Zbl 0226.26023 · doi:10.1007/BF01222558
[16] Losonczi, L.,Über eine neue Klasse von Mittelwerten. Acta Sci. Math. (Szeged)32 (1971), 71–81. · Zbl 0217.37503
[17] Losonczi, L.,Inequalities for integral mean values. J. Math. Anal. Appl.61 (1977), 586–606. · Zbl 0378.26008 · doi:10.1016/0022-247X(77)90164-0
[18] Losonczi, L.,Hölder type inequalities. InGeneral inequalities III. (ed. by E. F. Beckenbach and W. Walter), Birkhäuser Verlag, Boston, Stuttgart, Basel, 1983. pp. 91–106.
[19] Páles, Zs.,On Hölder type inequalities. J. Math. Anal. Appl.95 (1983), 457–466. · Zbl 0525.26011 · doi:10.1016/0022-247X(83)90120-8
[20] Páles, Zs.,On a generalization of the Minkowski inequality. J. Math. Anal. Appl.90 (1982), 456–462. · Zbl 0504.26008 · doi:10.1016/0022-247X(82)90073-7
[21] Páles, Zs.,Characterization of quasideviation means. Acta. Math. Sci. Hungar.40 (1982), 243–260. · Zbl 0541.26006 · doi:10.1007/BF01903583
[22] Páles, Zs., Ph.D. Thesis., Kossuth Univ., Debrecen, 1982.
[23] Rockafellar, R. T.,Convex analysis. Princeton Univ. Press, Princeton, NJ, 1970. · Zbl 0193.18401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.