×

Quantum engines and refrigerators. (English) Zbl 07931359

Summary: Engines are systems and devices that convert one form of energy into another, typically into a more useful form that can perform work. In the classical setup, physical, chemical, and biological engines largely involve the conversion of heat into work. This energy conversion is at the core of thermodynamic laws and principles and is codified in textbook material. In the quantum regime, however, the principles of energy conversion become ambiguous, since quantum phenomena come into play. As with classical thermodynamics, fundamental principles can be explored through engines and refrigerators, but, in the quantum case, these devices are miniaturized and their operations involve uniquely quantum effects. Our work provides a broad overview of this active field of quantum engines and refrigerators, reviewing the latest theoretical proposals and experimental realizations. We cover myriad aspects of these devices, starting with the basic concepts of quantum analogs to the classical thermodynamic cycle and continuing with different quantum features of energy conversion that span many branches of quantum mechanics. These features include quantum fluctuations that become dominant in the microscale, non-thermal resources that fuel the engines, and the possibility of scaling up the working medium’s size, to account for collective phenomena in many-body heat engines. Furthermore, we review studies of quantum engines operating in the strong system-bath coupling regime and those that include non-Markovian phenomena. Recent advances in thermoelectric devices and quantum information perspectives, including quantum measurement and feedback in quantum engines, are also presented.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter

References:

[1] Carnot, S., Reflections on the motive power of fire, and on machines fitted to develop that power, Paris: Bachelier, 108, 1824, 1824
[2] Scovil, H. E.D.; Schulz-DuBois, E. O., Three-level masers as heat engines, Phys. Rev. Lett., 2, 262-263, 1959
[3] Alicki, R., The quantum open system as a model of the heat engine, J. Phys. A: Math. Gen., 12, L103, 1979
[4] Kosloff, R., A quantum mechanical open system as a model of a heat engine, J. Chem. Phys., 80, 4, 1625-1631, 1984
[5] Kosloff, R.; Levy, A., Quantum heat engines and refrigerators: Continuous devices, Annu. Rev. Phys. Chem., 65, 1, 365, 2014
[6] Myers, N. M.; Abah, O.; Deffner, S., Quantum thermodynamic devices: from theoretical proposals to experimental reality, AVS Quantum Sci., 4, 2, Article 027101 pp., 2022
[7] Arrachea, L.d. C., Energy dynamics, heat production and heat-work conversion with qubits: towards the development of quantum machines, Rep. Progr. Phys., 2023
[8] Bender, C. M.; Brody, D. C.; Meister, B. K., Quantum mechanical carnot engine, J. Phys. A: Math. Gen., 33, 24, 4427, 2000 · Zbl 1058.80008
[9] Quan, H. T.; x. Liu, Y.; Sun, C. P.; Nori, F., Quantum thermodynamic cycles and quantum heat engines, Phys. Rev. E, 76, Article 031105 pp., 2007
[10] Geva, E.; Kosloff, R., On the classical limit of quantum thermodynamics in finite time, J. Chem. Phys., 97, 6, 4398-4412, 1992
[11] Kosloff, R., Quantum thermodynamics: a dynamical viewpoint, Entropy, 15, 6, 2100-2128, 2013 · Zbl 1297.81122
[12] Lindblad, G., On the generators of quantum dynamical semigroups, Comm. Math. Phys., 48, 2, 119-130, 1976 · Zbl 0343.47031
[13] Gorini, V.; Kossakowski, A.; Sudarshan, E. C.G., Completely positive dynamical semigroup of n-level system, J. Math. Phys., 17, 821, 1976 · Zbl 1446.47009
[14] Alicki, R.; Lendi, K., Quantum Dynamical Semigroups and Applications, 1987, Springer-Verlag: Springer-Verlag Berlin · Zbl 0652.46055
[15] Levy, A.; Gelbwaser-Klimovsky, D., Quantum Features and Signatures of Quantum Thermal Machines, 87-126, 2018, Springer International Publishing: Springer International Publishing Cham
[16] Geva, E.; Kosloff, R., A quantum-mechanical heat engine operating in finite time. a model consisting of spin-1/2 systems as the working fluid, J. Chem. Phys., 96, 4, 3054-3067, 1992
[17] Kosloff, R.; Feldmann, T., Discrete four-stroke quantum heat engine exploring the origin of friction, Phys. Rev. E, 65, 5, Article 055102 pp., 2002
[18] Çakmak, S.; Altintas, F., Quantum carnot cycle with inner friction, Quantum Inf. Process., 19, 1-15, 2020
[19] Dann, R.; Kosloff, R., Quantum signatures in the quantum carnot cycle, New J. Phys., 22, 1, Article 013055 pp., 2020
[20] Feldmann, T.; Kosloff, R., Quantum four-stroke heat engine: Thermodynamic observables in a model with intrinsic friction, Phys. Rev. E, 68, 1, Article 016101 pp., 2003
[21] Abe, S.; Okuyama, S., Role of the superposition principle for enhancing the efficiency of the quantum-mechanical carnot engine, Phys. Rev. E, 85, 1, Article 011104 pp., 2012
[22] Rezek, Y.; Kosloff, R., Irreversible performance of a quantum harmonic heat engine, New J. Phys., 8, 5, 83, 2006
[23] Gelbwaser-Klimovsky, D.; Alicki, R.; Kurizki, G., Minimal universal quantum heat machine, Phys. Rev. E, 87, Article 012140 pp., 2013
[24] Kosloff, R.; Rezek, Y., The quantum harmonic otto cycle, Entropy, 19, 4, 136, 2017
[25] Dann, R.; Kosloff, R.; Salamon, P., Quantum finite-time thermodynamics: Insight from a single qubit engine, Entropy, 22, 11, 2020
[26] Allahverdyan, A. E.; Johal, R. S.; Mahler, G., Work extremum principle: Structure and function of quantum heat engines, Phys. Rev. E, 77, Article 041118 pp., 2008
[27] Allahverdyan, A. E.; Hovhannisyan, K.; Mahler, G., Optimal refrigerator, Phys. Rev. E, 81, Article 051129 pp., 2010
[28] Gelbwaser-Klimovsky, D.; Niedenzu, W.; Kurizki, G., Thermodynamics of quantum systems under dynamical control, (Advances in Atomic, Molecular, and Optical Physics, Vol. 64, 2015, Elsevier), 329-407
[29] Koch, C. P.; Boscain, U.; Calarco, T.; Dirr, G.; Filipp, S.; Glaser, S. J.; Kosloff, R.; Montangero, S.; Schulte-Herbrüggen, T.; Sugny, D., Quantum optimal control in quantum technologies. strategic report on current status, visions and goals for research in europe, EPJ Quantum Technol., 9, 1, 19, 2022
[30] Zhang, J.-W.; Zhang, J.-Q.; Ding, G.-Y.; Li, J.-C.; Bu, J.-T.; Wang, B.; Yan, L.-L.; Su, S.-L.; Chen, L.; Nori, F., Dynamical control of quantum heat engines using exceptional points, Nature Commun., 13, 1, 6225, 2022
[31] Abiuso, P.; Perarnau-Llobet, M., Optimal cycles for low-dissipation heat engines, Phys. Rev. Lett., 124, Article 110606 pp., 2020
[32] Cavina, V.; Erdman, P. A.; Abiuso, P.; Tolomeo, L.; Giovannetti, V., Maximum-power heat engines and refrigerators in the fast-driving regime, Phys. Rev. A, 104, Article 032226 pp., 2021
[33] Terrén Alonso, P.; Abiuso, P.; Perarnau-Llobet, M.; Arrachea, L., Geometric optimization of nonequilibrium adiabatic thermal machines and implementation in a qubit system, PRX Quantum, 3, Article 010326 pp., 2022
[34] Erdman, P. A.; Noé, F., Identifying optimal cycles in quantum thermal machines with reinforcement-learning, npj Quantum Inf., 8, 1, 1-11, 2022
[35] Erdman, P. A.; Rolandi, A.; Abiuso, P.; Perarnau-Llobet, M.; Noé, F., Pareto-optimal cycles for power, efficiency and fluctuations of quantum heat engines using reinforcement learning, Phys. Rev. Res., 5, 2, Article L022017 pp., 2023
[36] Geusic, J.; du Bois, E. S.; Grasse, R. D.; Scovil, H., Quantum equivalent of carnot cycle, Phys. Rev., 156, 343, 1967
[37] Levy, A.; Alicki, R.; Kosloff, R., Quantum refrigerators and the third law of thermodynamics, Phys. Rev. E, 85, Article 061126 pp., 2012
[38] Breuer, H.-P.; Petruccione, F., Open Quantum Systems, 2002, Oxford University Press · Zbl 1053.81001
[39] Spohn, H., Entropy production for quantum dynamical semigroups, J. Math. Phys., 19, 5, 1227-1230, 1978 · Zbl 0428.47022
[40] Ghosh, A.; Gelbwaser-Klimovsky, D.; Niedenzu, W.; Lvovsky, A. I.; Mazets, I.; Scully, M. O.; Kurizki, G., Two-level masers as heat-to-work converters, Proc. Natl. Acad. Sci., 115, 40, 9941-9944, 2018
[41] Mitchison, M. T., Quantum thermal absorption machines: refrigerators, engines and clocks, Contemp. Phys., 60, 2, 164-187, 2019
[42] Palao, J. P.; Kosloff, R.; Gordon, J. M., Quantum thermodynamic cooling cycle, Phys. Rev. E, 64, 5, Article 056130 pp., 2001
[43] Linden, N.; Popescu, S.; Skrzypczyk, P., How small can thermal machines be? the smallest possible refrigerator, Phys. Rev. Lett., 105, 13, Article 130401 pp., 2010
[44] Levy, A.; Kosloff, R., Quantum absorption refrigerator, Phys. Rev. Lett., 108, Article 070604 pp., 2012
[45] Mari, A.; Eisert, J., Cooling by heating: Very hot thermal light can significantly cool quantum systems, Phys. Rev. Lett., 108, Article 120602 pp., 2012
[46] Levy, A.; Alicki, R.; Kosloff, R., Comment on cooling by heating: Refrigeration powered by photons, Phys. Rev. Lett., 109, Article 248901 pp., 2012
[47] Luis A. Correa, G. A.; Palao, Jose P.; Alonso, D., Performance bound for quantum absorption refrigerators, Phys. Rev. E, 87, Article 042131 pp., 2013
[48] Nimmrichter, S.; Dai, J.; Roulet, A.; Scarani, V., Quantum and classical dynamics of a three-mode absorption refrigerator, Quantum, 1, 37, 2017
[49] Correa, L. A.; Palao, J. P.; Alonso, D.; Adesso, G., Quantum-enhanced absorption refrigerators, Sci. Rep., 4, 1, 1-9, 2014
[50] Naseem, M. T.; Xuereb, A.; Müstecaplıoğlu, Ö. E., Thermodynamic consistency of the optomechanical master equation, Phys. Rev. A, 98, 5, Article 052123 pp., 2018
[51] Naseem, M. T.; Misra, A.; Müstecaplıoğlu, Ö. E., Two-body quantum absorption refrigerators with optomechanical-like interactions, Quantum Sci. Technol., 5, 3, Article 035006 pp., 2020
[52] Bhandari, B.; Jordan, A. N., Minimal two-body quantum absorption refrigerator, Phys. Rev. B, 104, 7, Article 075442 pp., 2021
[53] Hewgill, A.; González, J. O.; Palao, J. P.; Alonso, D.; Ferraro, A.; De Chiara, G., Three-qubit refrigerator with two-body interactions, Phys. Rev. E, 101, 1, Article 012109 pp., 2020
[54] Hofer, P. P.; Perarnau-Llobet, M.; Brask, J. B.; Silva, R.; Huber, M.; Brunner, N., Autonomous quantum refrigerator in a circuit qed architecture based on a josephson junction, Phys. Rev. B, 94, 23, Article 235420 pp., 2016
[55] Davide Venturelli, R. F.; Giovannetti, V., Minimal self-contained quantum refrigeration machine based on four quantum dots, prl, 110, Article 256801 pp., 2013
[56] Erdman, P. A.; Bhandari, B.; Fazio, R.; Pekola, J. P.; Taddei, F., Absorption refrigerators based on coulomb-coupled single-electron systems, Phys. Rev. B, 98, 4, Article 045433 pp., 2018
[57] Manikandan, S. K.; Jussiau, É.; Jordan, A. N., Autonomous quantum absorption refrigerators, Phys. Rev. B, 102, 23, Article 235427 pp., 2020
[58] Mitchison, M.; Potts, P., Physical implementations of quantum absorption refrigerators, (Binder, F.; Correa, L.; Gogolin, C.; Anders, J.; Adesso, G., Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, Vol. 195, 2018, Springer Cham), 1-228
[59] Mitchison, M. T.; Huber, M.; Prior, J.; Woods, M. P.; Plenio, M. B., Realising a quantum absorption refrigerator with an atom-cavity system, Quantum Sci. Technol., 1, 1, Article 015001 pp., 2016
[60] Maslennikov, G.; Ding, S.; Hablützel, R.; Gan, J.; Roulet, A.; Nimmrichter, S.; Dai, J.; Scarani, V.; Matsukevich, D., Quantum absorption refrigerator with trapped ions, Nature Commun., 10, 1, 1-8, 2019
[61] Marquet, C.; Schmidt-Kaler, F.; James, D., Phonon-phonon interactions due to non-linear effects in a linear ion trap, Appl. Phys. B, 76, 199-208, 2003
[62] Rubino, G.; Rozema, L. A.; Feix, A.; Araújo, M.; Zeuner, J. M.; Procopio, L. M.; Brukner, Č.; Walther, P., Experimental verification of an indefinite causal order, Sci. Adv., 3, 3, Article e1602589 pp., 2017
[63] Nie, X.; Zhu, X.; Huang, K.; Tang, K.; Long, X.; Lin, Z.; Tian, Y.; Qiu, C.; Xi, C.; Yang, X.; Li, J.; Dong, Y.; Xin, T.; Lu, D., Experimental realization of a quantum refrigerator driven by indefinite causal orders, Phys. Rev. Lett., 129, Article 100603 pp., 2022
[64] Gelbwaser-Klimovsky, D.; Bylinskii, A.; Gangloff, D.; Islam, R.; Aspuru-Guzik, A.; Vuletic, V., Single-atom heat machines enabled by energy quantization, Phys. Rev. Lett., 120, Article 170601 pp., 2018
[65] Chattopadhyay, P.; Paul, G., Relativistic quantum heat engine from uncertainty relation standpoint, Sci. Rep., 9, 1, 16967, 2019
[66] Watanabe, G.; Venkatesh, B. P.; Talkner, P.; del Campo, A., Quantum performance of thermal machines over many cycles, Phys. Rev. Lett., 118, Article 050601 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevLett.118.050601
[67] Uzdin, R.; Levy, A.; Kosloff, R., Equivalence of quantum heat machines, and quantum-thermodynamic signatures, Phys. Rev. X, 5, Article 031044 pp., 2015
[68] Klatzow, J.; Becker, J. N.; Ledingham, P. M.; Weinzetl, C.; Kaczmarek, K. T.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.; Uzdin, R.; Poem, E., Experimental demonstration of quantum effects in the operation of microscopic heat engines, Phys. Rev. Lett., 122, 11, Article 110601 pp., 2019
[69] Levy, A.; Lostaglio, M., Quasiprobability distribution for heat fluctuations in the quantum regime, PRX Quantum, 1, 1, Article 010309 pp., 2020
[70] Hernández-Gómez, Santiago; Gherardini, Stefano; Belenchia, Alessio; Lostaglio, Matteo; Levy, Amikam; Fabbri, Nicole, Projective measurements can probe nonclassical work extraction and time correlations, Phys. Rev. Res., 6, 2, 023280, 2024
[71] Kubo, R., The fluctuation-dissipation theorem 29 (1), 255-284, 1966 · Zbl 0163.23102
[72] Esposito, M.; Harbola, U.; Mukamel, S., Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Modern Phys., 81, 1665-1702, 2009 · Zbl 1205.82097
[73] Marconi, U. M.B.; Puglisi, A.; Rondoni, L.; Vulpiani, A., Fluctuation-dissipation: response theory in statistical physics, Phys. Rep., 461, 4-6, 111-195, 2008
[74] Agarwal, G., Fluctuation-dissipation theorems for systems in non-thermal equilibrium and applications, Z. Phys. A, 252, 1, 25-38, 1972
[75] Bochkov, G.; Kuzovlev, Y. E., Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics: I. generalized fluctuation-dissipation theorem, Phys. A, 106, 3, 443-479, 1981
[76] Seifert, U.; Speck, T., Fluctuation-dissipation theorem in nonequilibrium steady states, Europhys. Lett., 89, 1, 10007, 2010
[77] Konopik, M.; Lutz, E., Quantum response theory for nonequilibrium steady states, Phys. Rev. Res., 1, 3, Article 033156 pp., 2019
[78] Levy, A.; Rabani, E.; Limmer, D. T., Response theory for nonequilibrium steady states of open quantum systems, Phys. Rev. Res., 3, 2, Article 023252 pp., 2021
[79] Seifert, U.; thermodynamics, Stochastic., Fluctuation theorems and molecular machines, Rep. Progress Phys., 75, 12, Article 126001 pp., 2012
[80] An, S.; Zhang, J.-N.; Um, M.; Lv, D.; Lu, Y.; Zhang, J.; Yin, Z.-Q.; Quan, H.; Kim, K., Experimental test of the quantum jarzynski equality with a trapped-ion system, Nat. Phys., 11, 2, 193, 2015
[81] Pekola, J. P., Towards quantum thermodynamics in electronic circuits, Nat. Phys., 11, 2, 118, 2015
[82] Campisi, M.; Hänggi, P.; Talkner, P., Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Modern Phys., 83, 3, 771, 2011
[83] Batalhão, T. B.; Souza, A. M.; Mazzola, L.; Auccaise, R.; Sarthour, R. S.; Oliveira, I. S.; Goold, J.; De Chiara, G.; Paternostro, M.; Serra, R. M., Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system, Phys. Rev. Lett., 113, 14, Article 140601 pp., 2014
[84] Hernández-Gómez, S.; Gherardini, S.; Poggiali, F.; Cataliotti, F. S.; Trombettoni, A.; Cappellaro, P.; Fabbri, N., Experimental test of exchange fluctuation relations in an open quantum system, Phys. Rev. Res., 2, 2, Article 023327 pp., 2020
[85] Gómez, S. H.; Staudenmaier, N.; Campisi, M.; Fabbri, N., Experimental test of fluctuation relations for driven open quantum systems with an nv center, New J. Phys., 2021
[86] Crooks, G. E., Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E, 60, 3, 2721, 1999
[87] Jarzynski, C., Nonequilibrium equality for free energy differences, Phys. Rev. Lett., 78, 14, 2690, 1997
[88] Jarzynski, C.; Wójcik, D. K., Classical and quantum fluctuation theorems for heat exchange, Phys. Rev. Lett., 92, 23, Article 230602 pp., 2004
[89] Evans, D. J.; Cohen, E. G.; Morriss, G. P., Probability of second law violations in shearing steady states, Phys. Rev. Lett., 71, 15, 2401, 1993 · Zbl 0966.82507
[90] Levy, A.; Lostaglio, M., Quasiprobability distribution for heat fluctuations in the quantum regime, PRX Quantum, 1, Article 010309 pp., 2020
[91] Sinitsyn, N., Fluctuation relation for heat engines, J. Phys. A, 44, 40, Article 405001 pp., 2011 · Zbl 1225.80003
[92] Jiao, G.; Zhu, S.; He, J.; Ma, Y.; Wang, J., Fluctuations in irreversible quantum otto engines, Phys. Rev. E, 103, Article 032130 pp., 2021
[93] Campisi, M., Fluctuation relation for quantum heat engines and refrigerators, J. Phys. A, 47, 24, Article 245001 pp., 2014 · Zbl 1296.80002
[94] Campisi, M.; Pekola, J.; Fazio, R., Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments, New J. Phys., 17, 3, Article 035012 pp., 2015 · Zbl 1452.82008
[95] Talkner, P.; Lutz, E.; Hänggi, P., Fluctuation theorems: Work is not an observable, Phys. Rev. E, 75, Article 050102 pp., 2007
[96] Denzler, T.; Lutz, E., Efficiency fluctuations of a quantum heat engine, Phys. Rev. Res., 2, Article 032062 pp., 2020
[97] Saryal, S.; Agarwalla, B. K., Bounds on fluctuations for finite-time quantum otto cycle, Phys. Rev. E, 103, 6, L060103, 2021
[98] Jiao, G.; Xiao, Y.; He, J.; Ma, Y.; Wang, J., Quantum otto refrigerators in finite-time cycle period, New J. Phys., 23, 6, Article 063075 pp., 2021
[99] Denzler, T.; Santos, J. F.; Lutz, E.; Serra, R., Nonequilibrium fluctuations of a quantum heat engine, 2021, arXiv preprint arXiv:2104.13427
[100] Solfanelli, A.; Santini, A.; Campisi, M., Experimental verification of fluctuation relations with a quantum computer, PRX Quantum, 2, 3, Article 030353 pp., 2021
[101] Denzler, T.; Lutz, E., Power fluctuations in a finite-time quantum carnot engine, Phys. Rev. Res., 3, 3, L032041, 2021
[102] Solinas, P.; Miller, H. J.D.; Anders, J., Measurement-dependent corrections to work distributions arising from quantum coherences, Phys. Rev. A, 96, Article 052115 pp., 2017
[103] Solinas, P.; Gasparinetti, S., Probing quantum interference effects in the work distribution, Phys. Rev. A, 94, 5, Article 052103 pp., 2016
[104] Xu, B.-M.; Zou, J.; Guo, L.-S.; Kong, X.-M., Effects of quantum coherence on work statistics, Phys. Rev. A, 97, Article 052122 pp., 2018
[105] Miller, H. J.; Anders, J., Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework, New J. Phys., 19, 6, Article 062001 pp., 2017 · Zbl 1516.82016
[106] Allahverdyan, A. E., Nonequilibrium quantum fluctuations of work, Phys. Rev. E, 90, Article 032137 pp., 2014
[107] Lostaglio, Matteo; Belenchia, Alessio; Levy, Amikam; Hernández-Gómez, Santiago; Fabbri, Nicole; Gherardini, Stefano, Kirkwood-dirac quasiprobability approach to the statistics of incompatible observables, Quantum, 7, 1128, 2023
[108] Sampaio, R.; Suomela, S.; Ala-Nissila, T.; Anders, J.; Philbin, T., Quantum work in the bohmian framework, Phys. Rev. A, 97, 1, Article 012131 pp., 2018
[109] Micadei, K.; Landi, G. T.; Lutz, E., Quantum fluctuation theorems beyond two-point measurements, Phys. Rev. Lett., 124, 9, Article 090602 pp., 2020
[110] Micadei, K.; Peterson, J. P.; Souza, A. M.; Sarthour, R. S.; Oliveira, I. S.; Landi, G. T.; Serra, R. M.; Lutz, E., Experimental validation of fully quantum fluctuation theorems using dynamic bayesian networks, Phys. Rev. Lett., 127, 18, Article 180603 pp., 2021
[111] Gherardini, S.; Belenchia, A.; Paternostro, M.; Trombettoni, A., End-point measurement approach to assess quantum coherence in energy fluctuations, Phys. Rev. A, 104, 5, L050203, 2021
[112] Halpern, N. Y.; Swingle, B.; Dressel, J., Quasiprobability behind the out-of-time-ordered correlator, Phys. Rev. A, 97, 4, Article 042105 pp., 2018
[113] Alonso, J. R.G.; Halpern, N. Y.; Dressel, J., Out-of-time-ordered-correlator quasiprobabilities robustly witness scrambling, Phys. Rev. Lett., 122, 4, Article 040404 pp., 2019
[114] Barato, A. C.; Seifert, U., Thermodynamic uncertainty relation for biomolecular processes, Phys. Rev. Lett., 114, Article 158101 pp., 2015
[115] Timpanaro, A. M.; Guarnieri, G.; Goold, J.; Landi, G. T., Thermodynamic uncertainty relations from exchange fluctuation theorems, Phys. Rev. Lett., 123, Article 090604 pp., 2019
[116] Menczel, P.; Loisa, E.; Brandner, K.; Flindt, C., Thermodynamic uncertainty relations for coherently driven open quantum systems, J. Phys. A, 54, 31, Article 314002 pp., 2021 · Zbl 1519.81364
[117] Pietzonka, P.; Barato, A. C.; Seifert, U., Universal bound on the efficiency of molecular motors, J. Stat. Mech. Theory Exp., 2016, 12, Article 124004 pp., 2016
[118] Horowitz, J. M.; Gingrich, T. R., Thermodynamic uncertainty relations constrain non-equilibrium fluctuations, Nat. Phys., 16, 1, 15-20, 2020
[119] Agarwalla, B. K.; Segal, D., Assessing the validity of the thermodynamic uncertainty relation in quantum systems, Phys. Rev. B, 98, Article 155438 pp., 2018
[120] Seifert, U., Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Progr. Phys., 75, 12, Article 126001 pp., 2012
[121] Seifert, U., From stochastic thermodynamics to thermodynamic inference, Annu. Rev. Condens. Matter Phys., 10, 171-192, 2019
[122] Pietzonka, P.; Seifert, U., Universal trade-off between power, efficiency, and constancy in steady-state heat engines, Phys. Rev. Lett., 120, 19, Article 190602 pp., 2018
[123] Brandner, K.; Saito, K.; Seifert, U., Thermodynamics of micro-and nano-systems driven by periodic temperature variations, Phys. Rev. X, 5, 3, Article 031019 pp., 2015
[124] Koyuk, T.; Seifert, U., Operationally accessible bounds on fluctuations and entropy production in periodically driven systems, Phys. Rev. Lett., 122, 23, Article 230601 pp., 2019
[125] Koyuk, T.; Seifert, U., Thermodynamic uncertainty relation for time-dependent driving, Phys. Rev. Lett., 125, 26, Article 260604 pp., 2020
[126] Saryal, S.; Friedman, H. M.; Segal, D.; Agarwalla, B. K., Thermodynamic uncertainty relation in thermal transport, Phys. Rev. E, 100, Article 042101 pp., 2019
[127] Saryal, S.; Agarwalla, B. K., Bounds on fluctuations for finite-time quantum otto cycle, Phys. Rev. E, 103, L060103, 2021
[128] Saryal, S.; Gerry, M.; Khait, I.; Segal, D.; Agarwalla, B. K., Universal bounds on fluctuations in continuous thermal machines, Phys. Rev. Lett., 127, Article 190603 pp., 2021
[129] Das, J.; Biswas, L. R.R.; Bag, B. C., Unified approach to stochastic thermodynamics: Application to a quantum heat engine, Phys. Rev. E, 102, Article 042138 pp., 2020
[130] Gerry, M.; Kalantar, N.; Segal, D., Bounds on fluctuations for ensembles of quantum thermal machines, J. Phys. A, 55, 10, Article 104005 pp., 2022 · Zbl 1505.82006
[131] Miller, H. J.; Scandi, M.; Anders, J.; Perarnau-Llobet, M., Work fluctuations in slow processes: quantum signatures and optimal control, Phys. Rev. Lett., 123, 23, Article 230603 pp., 2019
[132] Miller, H. J.; Mohammady, M. H.; Perarnau-Llobet, M.; Guarnieri, G., Thermodynamic uncertainty relation in slowly driven quantum heat engines, Phys. Rev. Lett., 126, 21, Article 210603 pp., 2021
[133] Wigner, E. P.; Yanase, M. M., Information contents of distributions, Proc. Natl. Acad. Sci. USA, 49, 6, 910-918, 1963 · Zbl 0128.14104
[134] Tajima, H.; Funo, K., Superconducting-like heat current: Effective cancellation of current-dissipation trade-off by quantum coherence, Phys. Rev. Lett., 127, Article 190604 pp., 2021
[135] Vinjanampathy, S.; Anders, J., Quantum thermodynamics, Contemp. Phys., 57, 4, 545-579, 2016
[136] Ghosh, A.; Latune, C.; Davidovich, L.; Kurizki, G., Catalysis of heat-to-work conversion in quantum machines, Proc. Natl. Acad. Sci., 114, 46, 12156-12161, 2017
[137] Opatrnỳ, T.; Bräuer, Š.; Kofman, A. G.; Misra, A.; Meher, N.; Firstenberg, O.; Poem, E.; Kurizki, G., Nonlinear coherent heat machines, Sci. Adv., 9, 1, eadf1070, 2023
[138] Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E., Nanoscale heat engine beyond the carnot limit, Phys. Rev. Lett., 112, 3, Article 030602 pp., 2014
[139] de Assis, R. J.; de Mendonça, T. M.; Villas-Boas, C. J.; de Souza, A. M.; Sarthour, R. S.; Oliveira, I. S.; de Almeida, N. G., Efficiency of a quantum otto heat engine operating under a reservoir at effective negative temperatures, Phys. Rev. Lett., 122, Article 240602 pp., 2019
[140] Leggio, B.; Bellomo, B.; Antezza, M., Quantum thermal machines with single nonequilibrium environments, Phys. Rev. A, 91, Article 012117 pp., 2015
[141] Cherubim, C.; Brito, F.; Deffner, S., Non-thermal quantum engine in transmon qubits, Entropy, 21, 6, 2019
[142] Carollo, F.; Gambetta, F. M.; Brandner, K.; Garrahan, J. P.; Lesanovsky, I., Nonequilibrium quantum many-body rydberg atom engine, Phys. Rev. Lett., 124, Article 170602 pp., 2020
[143] Klaers, J.; Faelt, S.; Imamoglu, A.; Togan, E., Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit, Phys. Rev. X, 7, Article 031044 pp., 2017
[144] von Lindenfels, D.; Gräb, O.; Schmiegelow, C. T.; Kaushal, V.; Schulz, J.; Mitchison, M. T.; Goold, J.; Schmidt-Kaler, F.; Poschinger, U. G., Spin heat engine coupled to a harmonic-oscillator flywheel, Phys. Rev. Lett., 123, Article 080602 pp., 2019
[145] Scully, M. O.; Zubairy, M. S., Quantum Optics, 1997, Cambridge University Press
[146] Scully, M. O.; Zubairy, M. S.; Agarwal, G. S.; Walther, H., Extracting work from a single heat bath via vanishing quantum coherence, Science, 299, 862, 2003
[147] Scully, M. O., From lasers and masers to phaseonium and phasers, Phys. Rep., 219, 3, 191-201, 1992
[148] (Scully, M.; Sheenan, D., Quantum Limits to the Second Law, 2002, AIP Press: AIP Press New York), 83-91
[149] Baumgratz, T.; Cramer, M.; Plenio, M. B., Quantifying coherence, Phys. Rev. Lett., 113, Article 140401 pp., 2014
[150] Streltsov, A.; Adesso, G.; Plenio, M. B., Colloquium: Quantum coherence as a resource, Rev. Modern Phys., 89, Article 041003 pp., 2017
[151] Dag, C. B.; Niedenzu, W.; Müstecaplıoglu, O. E.; Kurizki, G., Multiatom quantum coherences in micromasers as fuel for thermal and nonthermal machines, Entropy, 18, 7, 2016
[152] Brandao, F. G.; Horodecki, M.; Oppenheim, J.; Renes, J. M.; Spekkens, R. W., Resource theory of quantum states out of thermal equilibrium, Phys. Rev. Lett., 111, 25, Article 250404 pp., 2013
[153] Chitambar, E.; Gour, G., Quantum resource theories, Rev. Modern Phys., 91, Article 025001 pp., 2019
[154] Guff, T.; Daryanoosh, S.; Baragiola, B. Q.; Gilchrist, A., Power and efficiency of a thermal engine with a coherent bath, Phys. Rev. E, 100, 3, Article 032129 pp., 2019
[155] Scully, M. O., Quantum photocell: Using quantum coherence to reduce radiative recombination and increase efficiency, Phys. Rev. Lett., 104, 20, Article 207701 pp., 2010
[156] Scully, M. O.; Chapin, K. R.; Dorfman, K. E.; Kim, M. B.; Svidzinsky, A., Quantum heat engine power can be increased by noise-induced coherence, Proc. Natl. Acad. Sci., 108, 37, 15097-15100, 2011
[157] Hammam, K.; Leitch, H.; Hassouni, Y.; Chiara, G. D., Exploiting coherence for quantum thermodynamic advantage, New J. Phys., 24, 11, Article 113053 pp., 2022
[158] Hardal, A.Ü.; Müstecaplıoğlu, Ö. E., Superradiant quantum heat engine, Sci. Rep., 5, 1, 1-9, 2015
[159] Kloc, M.; Meier, K.; Hadjikyriakos, K.; Schaller, G., Superradiant many-qubit absorption refrigerator, Phys. Rev. Appl., 16, 4, Article 044061 pp., 2021
[160] Kim, J.; h. Oh, S.; Yang, D.; Kim, J.; Lee, M.; An, K., A photonic quantum engine driven by superradiance, Nature Photonics, 16, 10, 707-711, 2022
[161] Marian, P.; Marian, T. A., Squeezed states with thermal noise. i. photon-number statistics, Phys. Rev. A, 47, 4474-4486, 1993
[162] Manzano, G.; Galve, F.; Zambrini, R.; Parrondo, J. M., Entropy production and thermodynamic power of the squeezed thermal reservoir, Phys. Rev. E, 93, 5, Article 052120 pp., 2016
[163] Wiedmann, M.; Stockburger, J. T.; Ankerhold, J., Non-markovian dynamics of a quantum heat engine: out-of-equilibrium operation and thermal coupling control, New J. Phys., 22, 3, Article 033007 pp., 2020
[164] Husimi, K., Miscellanea in elementary quantum mechanics, ii, Progr. Theoret. Phys., 9, 4, 381-402, 1953 · Zbl 0050.22002
[165] Deffner, S.; Lutz, E., Nonequilibrium work distribution of a quantum harmonic oscillator, Phys. Rev. E, 77, Article 021128 pp., 2008
[166] Huang, X.; Wang, T.; Yi, X., Effects of reservoir squeezing on quantum systems and work extraction, Phys. Rev. E, 86, 5, Article 051105 pp., 2012
[167] Abah, O.; Lutz, E., Efficiency of heat engines coupled to nonequilibrium reservoirs, Europhys. Lett., 106, 2, 20001, 2014
[168] Landi, G. T.; Paternostro, M., Irreversible entropy production: From classical to quantum, Rev. Modern Phys., 93, Article 035008 pp., 2021
[169] Sagawa, T., Second Law-Like Inequalities with Quantum Relative Entropy: An Introduction, 125-190, 2012
[170] Parrondo, J. M.R.; Horowitz, J. M.; Sagawa, T., Thermodynamics of information, Nat. Phys., 11, 2, 131-139, 2015
[171] Agarwalla, B. K.; Jiang, J.-H.; Segal, D., Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs, Phys. Rev. B, 96, Article 104304 pp., 2017
[172] Hofer, P. P.; Brask, J. B.; Perarnau-Llobet, M.; Brunner, N., Quantum thermal machine as a thermometer, Phys. Rev. Lett., 119, 9, Article 090603 pp., 2017
[173] Levy, A.; Göb, M.; Deng, B.; Singer, K.; Torrontegui, E.; Wang, D., Single-atom heat engine as a sensitive thermal probe, New J. Phys., 22, 9, Article 093020 pp., 2020
[174] Ramsey, N. F., Thermodynamics and statistical mechanics at negative absolute temperatures, Phys. Rev., 103, 1, 20, 1956 · Zbl 0074.43007
[175] Hama, Y.; Munro, W. J.; Nemoto, K., Relaxation to negative temperatures in double domain systems, Phys. Rev. Lett., 120, Article 060403 pp., 2018
[176] Purcell, E. M.; Pound, R. V., A nuclear spin system at negative temperature, Phys. Rev., 81, 279-280, 1951
[177] Oja, A. S.; Lounasmaa, O. V., Nuclear magnetic ordering in simple metals at positive and negative nanokelvin temperatures, Rev. Modern Phys., 69, 1-136, 1997
[178] Rapp, A.; Mandt, S.; Rosch, A., Equilibration rates and negative absolute temperatures for ultracold atoms in optical lattices, Phys. Rev. Lett., 105, Article 220405 pp., 2010
[179] Braun, S.; Ronzheimer, J. P.; Schreiber, M.; Hodgman, S. S.; Rom, T.; Bloch, I.; Schneider, U., Negative absolute temperature for motional degrees of freedom, Science, 339, 6115, 52-55, 2013
[180] Carr, L. D., Negative temperatures?, Science, 339, 6115, 42-43, 2013
[181] Dunkel, J.; Hilbert, S., Consistent thermostatistics forbids negative absolute temperatures, Nat. Phys., 10, 67-72, 2014
[182] Struchtrup, H., Work storage in states of apparent negative thermodynamic temperature, Phys. Rev. Lett., 120, Article 250602 pp., 2018
[183] Levy, A.; Diósi, L.; Kosloff, R., Quantum flywheel, Phys. Rev. A, 93, Article 052119 pp., 2016
[184] Mendonça, T. M.; Souza, A. M.; de Assis, R. J.; de Almeida, N. G.; Sarthour, R. S.; Oliveira, I. S.; Villas-Boas, C. J., Reservoir engineering for maximally efficient quantum engines, Phys. Rev. Res., 2, Article 043419 pp., 2020
[185] Nettersheim, J.; Burgardt, S.; Bouton, Q.; Adam, D.; Lutz, E.; Widera, A., Power of a quasispin quantum otto engine at negative effective spin temperature, 2022
[186] Peterson, J. P.S.; Batalhão, T. B.; Herrera, M.; Souza, A. M.; Sarthour, R. S.; Oliveira, I. S.; Serra, R. M., Experimental characterization of a spin quantum heat engine, Phys. Rev. Lett., 123, Article 240601 pp., 2019
[187] Dillenschneider, R.; Lutz, E., Energetics of quantum correlations, Europhys. Lett., 88, 5, 50003, 2009
[188] Barra, F., The thermodynamic cost of driving quantum systems by their boundaries, Sci. Rep., 5, 14873, 2015
[189] Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M., Quantum and information thermodynamics: A unifying framework based on repeated interactions, Phys. Rev. X, 7, Article 021003 pp., 2017
[190] Cattaneo, M.; Giorgi, G. L.; Maniscalco, S.; Zambrini, R., Local versus global master equation with common and separate baths: superiority of the global approach in partial secular approximation, New J. Phys., 21, 11, Article 113045 pp., 2019
[191] Cattaneo, M.; De Chiara, G.; Maniscalco, S.; Zambrini, R.; Giorgi, G. L., Collision models can efficiently simulate any multipartite markovian quantum dynamics, Phys. Rev. Lett., 126, Article 130403 pp., 2021
[192] De Chiara, G.; Antezza, M., Quantum machines powered by correlated baths, Phys. Rev. Res., 2, Article 033315 pp., 2020
[193] Ollivier, H.; Zurek, W. H., Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett., 88, Article 017901 pp., 2001 · Zbl 1255.81071
[194] Adesso, G.; Bromley, T. R.; Cianciaruso, M., Measures and applications of quantum correlations, J. Phys. A, 49, 47, Article 473001 pp., 2016 · Zbl 1356.81108
[195] Gardas, B.; Deffner, S., Thermodynamic universality of quantum carnot engines, Phys. Rev. E, 92, Article 042126 pp., 2015
[196] Esposito, M.; Lindenberg, K.; den Broeck, C. V., Entropy production as correlation between system and reservoir, New J. Phys., 12, 1, Article 013013 pp., 2010 · Zbl 1263.82032
[197] Deffner, S.; Jarzynski, C., Information processing and the second law of thermodynamics: An inclusive, hamiltonian approach, Phys. Rev. X, 3, Article 041003 pp., 2013
[198] Bera, M. N.; Riera, A.; Lewenstein, M.; Winter, A., Generalized laws of thermodynamics in the presence of correlations, Nature Commun., 8, 2017
[199] Allahverdyan, A. E.; Balian, R.; Nieuwenhuizen, Th. M., Maximal work extraction from finite quantum systems, Eur. Phys. Lett., 67, 565, 2004
[200] Perarnau-Llobet, M.; Hovhannisyan, K. V.; Huber, M.; Skrzypczyk, P.; Brunner, N.; Acín, A., Extractable work from correlations, Phys. Rev. X, 5, Article 041011 pp., 2015
[201] Alicki, R.; Fannes, M., Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E, 87, 4, Article 042123 pp., 2013
[202] (Binder, F.; Correa, L. A.; Gogolin, C.; Anders, J.; G, A., Thermodynamics in the Quantum Regime. Fundamental Aspects and New Directions, 2018, Springer)
[203] Julià-Farré, S.; Salamon, T.; Riera, A.; Bera, M. N.; Lewenstein, M., Bounds on the capacity and power of quantum batteries, Phys. Rev. Res., 2, Article 023113 pp., 2020
[204] Niedenzu, W.; Mukherjee, V.; Ghosh, A.; Kofman, A. G.; Kurizki, G., Quantum engine efficiency bound beyond the second law of thermodynamics, Nature Commun., 9, 2018
[205] Landi, G. T.; Paternostro, M., Irreversible entropy production: From classical to quantum, Rev. Modern Phys., 93, 3, Article 035008 pp., 2021
[206] Lostaglio, M.; Jennings, D.; Rudolph, T., Thermodynamic resource theories, non-commutativity and maximum entropy principles, New J. Phys., 19, 4, Article 043008 pp., 2017 · Zbl 1514.81214
[207] Manzano, G., Squeezed thermal reservoir as a generalized equilibrium reservoir, Phys. Rev. E, 98, Article 042123 pp., 2018
[208] Çakmak, S.; Altintas, F.; Müstecaplıoğlu, Ö. E., Lipkin-meshkov-glick model in a quantum otto cycle, Eur. Phys. J. Plus, 131, 6, 1-9, 2016
[209] Uzdin, R., Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling, Phys. Rev. Appl., 6, 2, Article 024004 pp., 2016
[210] da Silva Souza, L.; Manzano, G.; Fazio, R.; Iemini, F., Collective effects on the performance and stability of quantum heat engines, Phys. Rev. E, 106, 1, Article 014143 pp., 2022
[211] Ptaszyński, K., Coherence-enhanced constancy of a quantum thermoelectric generator, Phys. Rev. B, 98, 8, Article 085425 pp., 2018
[212] Campaioli, F.; Pollock, F. A.; Binder, F. C.; Céleri, L.; Goold, J.; Vinjanampathy, S.; Modi, K., Enhancing the charging power of quantum batteries, Phys. Rev. Lett., 118, Article 150601 pp., 2017
[213] Andolina, G. M.; Keck, M.; Mari, A.; Campisi, M.; Giovannetti, V.; Polini, M., Extractable work, the role of correlations, and asymptotic freedom in quantum batteries, Phys. Rev. Lett., 122, Article 047702 pp., 2019
[214] Campaioli, F.; Gherardini, S.; Quach, J. Q.; Polini, M.; Andolina, G. M., Colloquium: Quantum batteries, 2023, arXiv:2308.02277
[215] Niedenzu, W.; Kurizki, G., Cooperative many-body enhancement of quantum thermal machine power, New J. Phys., 20, 11, Article 113038 pp., 2018
[216] Dicke, R. H., Coherence in spontaneous radiation processes, Phys. Rev., 93, 99-110, 1954 · Zbl 0055.21702
[217] Watanabe, G.; Venkatesh, B. P.; Talkner, P.; Hwang, M.-J.; del Campo, A., Quantum statistical enhancement of the collective performance of multiple bosonic engines, Phys. Rev. Lett., 124, Article 210603 pp., 2020
[218] Campisi, M.; Fazio, R., The power of a critical heat engine, Nature Commun., 7, 1, 1-5, 2016
[219] Allahverdyan, A. E.; Hovhannisyan, K. V.; Melkikh, A. V.; Gevorkian, S. G., Carnot cycle at finite power: Attainability of maximal efficiency, Phys. Rev. Lett., 111, Article 050601 pp., 2013
[220] S, R. B.; Mukherjee, V.; Divakaran, U.; del Campo, A., Universal finite-time thermodynamics of many-body quantum machines from kibble-zurek scaling, Phys. Rev. Res., 2, Article 043247 pp., 2020
[221] Pérez-Fernández, P.; Relaño, A., From thermal to excited-state quantum phase transition: The dicke model, Phys. Rev. E, 96, Article 012121 pp., 2017
[222] Ma, Y.-H.; Su, S.-H.; Sun, C.-P., Quantum thermodynamic cycle with quantum phase transition, Phys. Rev. E, 96, Article 022143 pp., 2017
[223] Fadaie, M.; Yunt, E.; Müstecaplıoğlu, O. E., Topological phase transition in quantum-heat-engine cycles, Phys. Rev. E, 98, Article 052124 pp., 2018
[224] Piccitto, G.; Campisi, M.; Rossini, D., The ising critical quantum otto engine, New J. Phys., 24, 10, Article 103023 pp., 2022
[225] Fogarty, T.; Busch, T., A many-body heat engine at criticality, Quantum Sci. Technol., 6, 1, Article 015003 pp., 2020
[226] Fei, Z.; Freitas, N.; Cavina, V.; Quan, H. T.; Esposito, M., Work statistics across a quantum phase transition, Phys. Rev. Lett., 124, Article 170603 pp., 2020
[227] Zhang, F.; Quan, H., Work statistics across a quantum critical surface, Phys. Rev. E, 105, 2, Article 024101 pp., 2022
[228] Mukherjee, V.; Divakaran, U., Many-body quantum thermal machines, J. Phys.: Condens. Matter., 33, 45, Article 454001 pp., 2021
[229] Jaramillo, J.; Beau, M.; del Campo, A., Quantum supremacy of many-particle thermal machines, New J. Phys., 18, 7, Article 075019 pp., 2016 · Zbl 1457.82212
[230] Girardeau, M., Relationship between systems of impenetrable bosons and fermions in one dimension, J. Math. Phys., 1, 6, 516-523, 1960 · Zbl 0098.21704
[231] Wilczek, F., Fractional Statistics and Anyon Superconductivity, 1990, WORLD SCIENTIFIC
[232] del Campo, A.; Kim, K., Focus on shortcuts to adiabaticity, New J. Phys., 21, 5, Article 050201 pp., 2019
[233] Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J. G., Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Modern Phys., 91, Article 045001 pp., 2019
[234] Beau, M.; Jaramillo, J.; Del Campo, A., Scaling-up quantum heat engines efficiently via shortcuts to adiabaticity, Entropy, 18, 5, 2016
[235] Hartmann, A.; Mukherjee, V.; Mbeng, G. B.; Niedenzu, W.; Lechner, W., Multi-spin counter-diabatic driving in many-body quantum otto refrigerators, Quantum, 4, 377, 2020
[236] Hartmann, A.; Mukherjee, V.; Niedenzu, W.; Lechner, W., Many-body quantum heat engines with shortcuts to adiabaticity, Phys. Rev. Res., 2, 2, Article 023145 pp., 2020
[237] Chen, Y.-Y.; Watanabe, G.; Yu, Y.-C.; Guan, X.-W.; del Campo, A., An interaction-driven many-particle quantum heat engine and its universal behavior, npj Quantum Inf., 5, 1, 88, 2019
[238] Chen, J.; Dong, H.; Sun, C.-P., Bose-fermi duality in a quantum otto heat engine with trapped repulsive bosons, Phys. Rev. E, 98, Article 062119 pp., 2018
[239] Li, J.; Fogarty, T.; Campbell, S.; Chen, X.; Busch, T., An efficient nonlinear feshbach engine, New J. Phys., 20, 1, Article 015005 pp., 2018
[240] Ma, Y.-H.; Su, S.-H.; Sun, C.-P., Quantum thermodynamic cycle with quantum phase transition, Phys. Rev. E, 96, Article 022143 pp., 2017
[241] Wang, Q., Performance of quantum heat engines under the influence of long-range interactions, Phys. Rev. E, 102, Article 012138 pp., 2020
[242] Halpern, N. Y.; White, C. D.; Gopalakrishnan, S.; Refael, G., Quantum engine based on many-body localization, Phys. Rev. B, 99, 2, Article 024203 pp., 2019
[243] Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L., Machine learning and the physical sciences, Rev. Modern Phys., 91, 4, Article 045002 pp., 2019
[244] Ashida, Y.; Sagawa, T., Learning the best nanoscale heat engines through evolving network topology, Commun. Phys., 4, 1, 45, 2021
[245] Khait, I.; Carrasquilla, J.; Segal, D., Optimal control of quantum thermal machines using machine learning, Phys. Rev. Res., 4, 1, L012029, 2022
[246] Jarzynski, C., Nonequilibrium work theorem for a system strongly coupled to a thermal environment, J. Stat. Mech. Theory Exp., 2004, 09, P09005, 2004 · Zbl 1073.82501
[247] Talkner, P.; Hänggi, P., Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical, Rev. Modern Phys., 92, Article 041002 pp., 2020
[248] Rivas, Á., Strong coupling thermodynamics of open quantum systems, Phys. Rev. Lett., 124, 16, Article 160601 pp., 2020
[249] Xu, D.; Wang, C.; Zhao, Y.; Cao, J., Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective, New J. Phys., 18, 2, Article 023003 pp., 2016
[250] Gelbwaser-Klimovsky, D.; Aspuru-Guzik, A., Strongly coupled quantum heat machines, J. Phys. Chem. Lett., 6, 17, 3477-3482, 2015
[251] Wang, C.; Ren, J.; Cao, J., Nonequilibrium energy transfer at nanoscale: A unified theory from weak to strong coupling, Sci. Rep., 5, 1, 1-10, 2015
[252] Iles-Smith, J.; Lambert, N.; Nazir, A., Environmental dynamics, correlations, and the emergence of noncanonical equilibrium states in open quantum systems, Phys. Rev. A, 90, 3, Article 032114 pp., 2014
[253] Strasberg, P.; Schaller, G.; Lambert, N.; Brandes, T., Nonequilibrium thermodynamics in the strong coupling and non-markovian regime based on a reaction coordinate mapping, New J. Phys., 18, 7, Article 073007 pp., 2016
[254] Nazir, A.; Schaller, G., The reaction coordinate mapping in quantum thermodynamics, (Thermodynamics in the Quantum Regime, 2018, Springer), 551-577
[255] Esposito, M.; Ochoa, M. A.; Galperin, M., Quantum thermodynamics: A nonequilibrium green’s function approach, Phys. Rev. Lett., 114, 8, Article 080602 pp., 2015
[256] Whitney, R. S., Non-markovian quantum thermodynamics: Laws and fluctuation theorems, Phys. Rev. B, 98, 8, Article 085415 pp., 2018
[257] Ludovico, M. F.; Lim, J. S.; Moskalets, M.; Arrachea, L.; Sánchez, D., Dynamical energy transfer in ac-driven quantum systems, Phys. Rev. B, 89, 16, Article 161306 pp., 2014
[258] Bruch, A.; Thomas, M.; Kusminskiy, S. V.; Von Oppen, F.; Nitzan, A., Quantum thermodynamics of the driven resonant level model, Phys. Rev. B, 93, 11, Article 115318 pp., 2016
[259] Ludovico, M. F.; Moskalets, M.; Sánchez, D.; Arrachea, L., Dynamics of energy transport and entropy production in ac-driven quantum electron systems, Phys. Rev. B, 94, 3, Article 035436 pp., 2016
[260] Bergmann, N.; Galperin, M., A green’s function perspective on the nonequilibrium thermodynamics of open quantum systems strongly coupled to baths, Eur. Phys. J. Spec. Top., 230, 4, 859-866, 2021
[261] Seshadri, N.; Galperin, M., Entropy and information flow in quantum systems strongly coupled to baths, Phys. Rev. B, 103, 8, Article 085415 pp., 2021
[262] Schinabeck, C.; Erpenbeck, A.; Härtle, R.; Thoss, M., Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems, Phys. Rev. B, 94, 20, Article 201407 pp., 2016
[263] Dou, W.; Bätge, J.; Levy, A.; Thoss, M., Universal approach to quantum thermodynamics of strongly coupled systems under nonequilibrium conditions and external driving, Phys. Rev. B, 101, 18, Article 184304 pp., 2020
[264] Bätge, J.; Levy, A.; Dou, W.; Thoss, M., Nonadiabatically driven open quantum systems under out-of-equilibrium conditions: Effect of electron-phonon interaction, Phys. Rev. B, 106, 7, Article 075419 pp., 2022
[265] Katz, G.; Kosloff, R., Quantum thermodynamics in strong coupling: Heat transport and refrigeration, Entropy, 18, 5, 186, 2016
[266] Uzdin, R.; Levy, A.; Kosloff, R., Quantum heat machines equivalence, work extraction beyond markovianity, and strong coupling via heat exchangers, Entropy, 18, 4, 124, 2016
[267] Lang, I.; Firsov, Y. A., Kinetic theory of semiconductors with low mobility, Sov. Phys.—JETP, 16, 5, 1301, 1963 · Zbl 0121.22801
[268] Würger, A., Strong-coupling theory for the spin-phonon model, Phys. Rev. B, 57, 1, 347, 1998
[269] Wilson-Rae, I.; Imamoğlu, A., Quantum dot cavity-qed in the presence of strong electron-phonon interactions, Phys. Rev. B, 65, 23, Article 235311 pp., 2002
[270] McCutcheon, D. P.; Nazir, A., Quantum dot rabi rotations beyond the weak exciton-phonon coupling regime, New J. Phys., 12, 11, Article 113042 pp., 2010
[271] Hsieh, C.; Liu, J.; Duan, C.; Cao, J., A nonequilibrium variational polaron theory to study quantum heat transport, J. Phys. Chem. C, 123, 28, 17196-17204, 2019
[272] Maier, S.; Schmidt, T.; Komnik, A., Charge transfer statistics of a molecular quantum dot with strong electron-phonon interaction, Phys. Rev. B, 83, 8, Article 085401 pp., 2011
[273] Walter, S.; Trauzettel, B.; Schmidt, T. L., Transport properties of double quantum dots with electron-phonon coupling, Phys. Rev. B, 88, 19, Article 195425 pp., 2013
[274] Krause, T.; Brandes, T.; Esposito, M.; Schaller, G., Thermodynamics of the polaron master equation at finite bias, J. Chem. Phys., 142, 13, Article 134106 pp., 2015
[275] Qin, M.; Shen, H.; Zhao, X.; Yi, X., Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach, Phys. Rev. A, 96, 1, Article 012125 pp., 2017
[276] Newman, D.; Mintert, F.; Nazir, A., Performance of a quantum heat engine at strong reservoir coupling, Phys. Rev. E, 95, Article 032139 pp., 2017
[277] Ivander, F.; Anto-Sztrikacs, N.; Segal, D., Strong system-bath coupling effects in quantum absorption refrigerators, Phys. Rev. E, 105, Article 034112 pp., 2022
[278] Newman, D.; Mintert, F.; Nazir, A., Quantum limit to nonequilibrium heat-engine performance imposed by strong system-reservoir coupling, Phys. Rev. E, 101, Article 052129 pp., 2020
[279] Gallego, R.; Riera, A.; Eisert, J., Thermal machines beyond the weak coupling regime, New J. Phys., 16, 12, Article 125009 pp., 2014
[280] Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J., Strong coupling corrections in quantum thermodynamics, Phys. Rev. Lett., 120, Article 120602 pp., 2018
[281] Gogolin, C.; Eisert, J., Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems, Rep. Progr. Phys., 79, 5, Article 056001 pp., 2016
[282] Allahverdyan, A. E.; Nieuwenhuizen, T. M., Extraction of work from a single thermal bath in the quantum regime, Phys. Rev. Lett., 85, 1799-1802, 2000
[283] Esposito, M.; Ochoa, M. A.; Galperin, M., Nature of heat in strongly coupled open quantum systems, Phys. Rev. B, 92, 23, Article 235440 pp., 2015
[284] Strasberg, P., Repeated interactions and quantum stochastic thermodynamics at strong coupling, Phys. Rev. Lett., 123, Article 180604 pp., 2019
[285] Agarwalla, B. K.; Jiang, J.-H.; Segal, D., Full counting statistics of vibrationally assisted electronic conduction: Transport and fluctuations of thermoelectric efficiency, Phys. Rev. B, 92, 24, Article 245418 pp., 2015
[286] Carrega, M.; Solinas, P.; Braggio, A.; Sassetti, M.; Weiss, U., Functional integral approach to time-dependent heat exchange in open quantum systems: general method and applications, New J. Phys., 17, 4, Article 045030 pp., 2015
[287] Wang, C.; Ren, J.; Cao, J., Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics, Phys. Rev. A, 95, 2, Article 023610 pp., 2017
[288] Funo, K.; Quan, H., Path integral approach to quantum thermodynamics, Phys. Rev. Lett., 121, 4, Article 040602 pp., 2018
[289] Weiss, Ulrich., Quantum Dissipative Systems, 1998, Worls Scientific
[290] Talkner, P.; Hänggi, P., Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical, Rev. Modern Phys., 92, Article 041002 pp., 2020
[291] Carrega, M.; Solinas, P.; Sassetti, M.; Weiss, U., Energy exchange in driven open quantum systems at strong coupling, Phys. Rev. Lett., 116, Article 240403 pp., 2016
[292] Kato, A.; Tanimura, Y., Quantum heat current under non-perturbative and non-markovian conditions: Applications to heat machines, J. Chem. Phys., 145, 22, Article 224105 pp., 2016
[293] Francica, G.; Goold, J.; Plastina, F., Role of coherence in the nonequilibrium thermodynamics of quantum systems, Phys. Rev. E, 99, 4, Article 042105 pp., 2019
[294] Schollwöck, U., The density-matrix renormalization group in the age of matrix product states, Ann. Phys., 326, 1, 96-192, 2011 · Zbl 1213.81178
[295] Paeckel, S.; Köhler, T.; Swoboda, A.; Manmana, S. R.; Schollwöck, U.; Hubig, C., Time-evolution methods for matrix-product states, Ann. Physics, 411, Article 167998 pp., 2019 · Zbl 1433.81170
[296] Tamascelli, D.; Smirne, A.; Huelga, S. F.; Plenio, M. B., Nonperturbative treatment of non-markovian dynamics of open quantum systems, Phys. Rev. Lett., 120, 3, Article 030402 pp., 2018
[297] Bertini, B.; Heidrich-Meisner, F.; Karrasch, C.; Prosen, T.; Steinigeweg, R.; Žnidarič, M., Finite-temperature transport in one-dimensional quantum lattice models, Rev. Modern Phys., 93, 2, Article 025003 pp., 2021
[298] Rams, M. M.; Zwolak, M., Breaking the entanglement barrier: Tensor network simulation of quantum transport, Phys. Rev. Lett., 124, 13, Article 137701 pp., 2020
[299] Chin, A. W.; Rivas, Á.; Huelga, S. F.; Plenio, M. B., Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials, J. Math. Phys., 51, 9, Article 092109 pp., 2010 · Zbl 1309.81119
[300] Prior, J.; Chin, A. W.; Huelga, S. F.; Plenio, M. B., Efficient simulation of strong system-environment interactions, Phys. Rev. Lett., 105, 5, Article 050404 pp., 2010
[301] Del Pino, J.; Schröder, F. A.; Chin, A. W.; Feist, J.; Garcia-Vidal, F. J., Tensor network simulation of non-markovian dynamics in organic polaritons, Phys. Rev. Lett., 121, 22, Article 227401 pp., 2018
[302] Schröder, F. A.; Turban, D. H.; Musser, A. J.; Hine, N. D.; Chin, A. W., Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation, Nature Commun., 10, 1, 1-10, 2019
[303] Strathearn, A.; Kirton, P.; Kilda, D.; Keeling, J.; Lovett, B. W., Efficient non-markovian quantum dynamics using time-evolving matrix product operators, Nature Commun., 9, 1, 1-9, 2018
[304] Popovic, M.; Mitchison, M. T.; Strathearn, A.; Lovett, B. W.; Goold, J.; Eastham, P. R., Quantum heat statistics with time-evolving matrix product operators, PRX Quantum, 2, 2, Article 020338 pp., 2021
[305] Thoenniss, J.; Lerose, A.; Abanin, D. A., Non-equilibrium quantum impurity problems via matrix-product states in the temporal domain, 2022, arXiv preprint arXiv:2205.04995
[306] Thoenniss, J.; Sonner, M.; Lerose, A.; Abanin, D. A., An efficient method for quantum impurity problems out of equilibrium, 2022, arXiv preprint arXiv:2211.10272
[307] Levy, A.; Dou, W., Modeling energy transfer in quantum thermal machines, Physics, 13, 129, 2020
[308] Tamascelli, D.; Smirne, A.; Lim, J.; Huelga, S. F.; Plenio, M. B., Efficient simulation of finite-temperature open quantum systems, Phys. Rev. Lett., 123, 9, Article 090402 pp., 2019
[309] Brenes, M.; Mendoza-Arenas, J. J.; Purkayastha, A.; Mitchison, M. T.; Clark, S. R.; Goold, J., Tensor-network method to simulate strongly interacting quantum thermal machines, Phys. Rev. X, 10, Article 031040 pp., 2020
[310] Schmidt, R.; Negretti, A.; Ankerhold, J.; Calarco, T.; Stockburger, J. T., Optimal control of open quantum systems: cooperative effects of driving and dissipation, Phys. Rev. Lett., 107, 13, Article 130404 pp., 2011
[311] Reich, D. M.; Katz, N.; Koch, C. P., Exploiting non-markovianity for quantum control, Sci. Rep., 5, 2015
[312] Koch, C. P., Controlling open quantum systems: tools, achievements, and limitations, J. Phys.: Condens. Matter., 28, 21, Article 213001 pp., 2016
[313] Chin, A. W.; Huelga, S. F.; Plenio, M. B., Quantum metrology in non-markovian environments, Phys. Rev. Lett., 109, 23, Article 233601 pp., 2012
[314] Bylicka, B.; Tukiainen, M.; Chruściński, D.; Piilo, J.; Maniscalco, S., Thermodynamic power of non-markovianity, Sci. Rep., 6, 1, 1-7, 2016
[315] Breuer, H.-P.; Laine, E.-M.; Piilo, J.; Vacchini, B., Colloquium: Non-markovian dynamics in open quantum systems, Rev. Modern Phys., 88, 2, Article 021002 pp., 2016
[316] Chruściński, D., Dynamical maps beyond markovian regime, Phys. Rep., 992, 1-85, 2022 · Zbl 1516.81136
[317] Rivas, Á.; Huelga, S. F.; Plenio, M. B., Quantum non-markovianity: characterization, quantification and detection, Rep. Progr. Phys., 77, 9, Article 094001 pp., 2014
[318] Lorenzo, S.; Plastina, F.; Paternostro, M., Geometrical characterization of non-markovianity, Phys. Rev. A, 88, 2, Article 020102 pp., 2013
[319] Strasberg, P.; Esposito, M., Non-markovianity and negative entropy production rates, Phys. Rev. E, 99, 1, Article 012120 pp., 2019
[320] De Vega, I.; Alonso, D., Dynamics of non-markovian open quantum systems, Rev. Modern Phys., 89, 1, Article 015001 pp., 2017
[321] Rivas, Á.; Huelga, S. F.; Plenio, M. B., Entanglement and non-markovianity of quantum evolutions, Phys. Rev. Lett., 105, 5, Article 050403 pp., 2010
[322] Pozas-Kerstjens, A.; Brown, E. G.; Hovhannisyan, K. V., A quantum otto engine with finite heat baths: energy, correlations, and degradation, New J. Phys., 20, 4, Article 043034 pp., 2018 · Zbl 1543.82029
[323] Caldeira, A. O.; Leggett, A. J., Quantum tunnelling in a dissipative system, Ann. Phys., 149, 2, 374, 1983
[324] Groeblacher, S.; Trubarov, A.; Prigge, N.; Cole, G.; Aspelmeyer, M.; Eisert, J., Observation of non-markovian micromechanical brownian motion, Nature Commun., 6, 1, 1-6, 2015
[325] Hanggi, P.; Jung, P., Colored Noise in Dynamical Systems, Adv. Chem. Phys., 89, 239-326, 1995
[326] X.Y. Zhang, X.L. Huang, X.X. Yi, 47 (45) (2014) 455002 http://dx.doi.org/10.1088/1751-8113/47/45/455002. · Zbl 1305.81117
[327] Shirai, Y.; Hashimoto, K.; Tezuka, R.; Uchiyama, C.; Hatano, N., Non-markovian effect on quantum otto engine: Role of system-reservoir interaction, Phys. Rev. Res., 3, Article 023078 pp., 2021
[328] Carrega, M.; Cangemi, L. M.; De Filippis, G.; Cataudella, V.; Benenti, G.; Sassetti, M., Engineering dynamical couplings for quantum thermodynamic tasks, PRX Quantum, 3, 1, Article 010323 pp., 2022
[329] Guarnieri, G.; Uchiyama, C.; Vacchini, B., Energy backflow and non-markovian dynamics, Phys. Rev. A, 93, 1, Article 012118 pp., 2016
[330] Ishizaki, M.; Hatano, N.; Tajima, H., Switching the function of the quantum otto cycle in non-markovian dynamics: heat engine, heater and heat pump, 2022, arXiv preprint arXiv:2211.09336
[331] Mukherjee, V.; Kofman, A. G.; Kurizki, G., Anti-zeno quantum advantage in fast-driven heat machines, Commun. Phys., 3, 1, 1-12, 2020
[332] Xu, M.; Stockburger, J.; Kurizki, G.; Ankerhold, J., Minimal quantum thermal machine in a bandgap environment: non-markovian features and anti-zeno advantage, New J. Phys., 24, 3, Article 035003 pp., 2022
[333] Grifoni, M.; Hänggi, P., Driven quantum tunneling, Phys. Rep., 304, 229-354, 1998
[334] Kretschmer, S.; Luoma, K.; Strunz, W. T., Collision model for non-markovian quantum dynamics, Phys. Rev. A, 94, 1, Article 012106 pp., 2016
[335] McCloskey, R.; Paternostro, M., Non-markovianity and system-environment correlations in a microscopic collision model, Phys. Rev. A, 89, 5, Article 052120 pp., 2014
[336] Uzdin, R.; Kosloff, R., The multilevel four-stroke swap engine and its environment, New J. Phys., 16, 9, Article 095003 pp., 2014
[337] Campbell, S.; Ciccarello, F.; Palma, G. M.; Vacchini, B., System-environment correlations and markovian embedding of quantum non-markovian dynamics, Phys. Rev. A, 98, 1, Article 012142 pp., 2018
[338] Ciccarello, F.; Lorenzo, S.; Giovannetti, V.; Palma, G. M., Quantum collision models: Open system dynamics from repeated interactions, Phys. Rep., 954, 1-70, 2022 · Zbl 1514.81179
[339] Camati, P. A.; Santos, J. F.; Serra, R. M., Employing non-markovian effects to improve the performance of a quantum otto refrigerator, Phys. Rev. A, 102, 1, Article 012217 pp., 2020
[340] Lostaglio, M., An introductory review of the resource theory approach to thermodynamics, Rep. Progr. Phys., 82, 11, Article 114001 pp., 2019
[341] Lostaglio, M.; Korzekwa, K., Continuous thermomajorization and a complete set of laws for markovian thermal processes, Phys. Rev. A, 106, 1, Article 012426 pp., 2022
[342] Ptaszyński, K., Non-markovian thermal operations boosting the performance of quantum heat engines, Phys. Rev. E, 106, 1, Article 014114 pp., 2022
[343] McCaul, G. M.G.; Lorenz, C. D.; Kantorovich, L., Partition-free approach to open quantum systems in harmonic environments: An exact stochastic liouville equation, Phys. Rev. B, 95, Article 125124 pp., 2017
[344] Hu, B. L.; Paz, J. P.; Zhang, Y., Quantum brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D, 45, 2843-2861, 1992 · Zbl 1232.82011
[345] Bhadra, C., A strongly coupled open system with a non-linear bath: fluctuation-dissipation and langevin dynamics, J. Stat. Mech. Theory Exp., 2018, 3, Article 033206 pp., 2018 · Zbl 1459.82221
[346] Grabert, H.; Thorwart, M., Quantum mechanical response to a driven caldeira-leggett bath, Phys. Rev. E, 98, 1, Article 012122 pp., 2018
[347] Stockburger, J. T.; Mak, C. H., Stochastic liouvillian algorithm to simulate dissipative quantum dynamics with arbitrary precision, J. Chem. Phys., 110, 11, 4983-4985, 1999
[348] Stockburger, J. T.; Grabert, H., Exact \(\mathit{c} \)-number representation of non-markovian quantum dissipation, Phys. Rev. Lett., 88, Article 170407 pp., 2002
[349] Pancotti, N.; Scandi, M.; Mitchison, M. T.; Perarnau-Llobet, M., Speed-ups to isothermality: Enhanced quantum thermal machines through control of the system-bath coupling, Phys. Rev. X, 10, 3, Article 031015 pp., 2020
[350] Cavaliere, F.; Carrega, M.; De Filippis, G.; Cataudella, V.; Benenti, G.; Sassetti, M., Dynamical heat engines with non-markovian reservoirs, Phys. Rev. Res., 4, 3, Article 033233 pp., 2022
[351] Li, N.; Hänggi, P.; Li, B., Ratcheting heat flux against a thermal bias, Europhys. Lett., 84, 4, 40009, 2008
[352] Freitas, N.; Gallego, R.; Masanes, L.; Paz, J. P., Cooling to absolute zero: The unattainability principle, (Thermodynamics in the Quantum Regime, 2018, Springer), 597-622
[353] Abiuso, P.; Giovannetti, V., Non-markov enhancement of maximum power for quantum thermal machines, Phys. Rev. A, 99, 5, Article 052106 pp., 2019
[354] Cavina, V.; Mari, A.; Giovannetti, V., Slow dynamics and thermodynamics of open quantum systems, Phys. Rev. Lett., 119, 5, Article 050601 pp., 2017
[355] Chruściński, D.; Kossakowski, A.; Pascazio, S., Long-time memory in non-markovian evolutions, Phys. Rev. A, 81, 3, Article 032101 pp., 2010
[356] Cerrillo, J.; Cao, J., Non-markovian dynamical maps: numerical processing of open quantum trajectories, Phys. Rev. Lett., 112, 11, Article 110401 pp., 2014
[357] Thomas, G.; Siddharth, N.; Banerjee, S.; Ghosh, S., Thermodynamics of non-markovian reservoirs and heat engines, Phys. Rev. E, 97, 6, Article 062108 pp., 2018
[358] Pezzutto, M.; Paternostro, M.; Omar, Y., An out-of-equilibrium non-markovian quantum heat engine, Quantum Sci. Technol., 4, 2, Article 025002 pp., 2019
[359] Ashcroft, N.; Mermin, N., Solid State Physics, 1976, Saunders College Publishing: Saunders College Publishing New York
[360] Benenti, G.; Casati, G.; Saito, K.; Whitney, R. S., Fundamental aspects of steady-state conversion of heat to work at the nanoscale, Phys. Rep., 694, 1-124, 2017 · Zbl 1370.82037
[361] Beenakker, C.; van Houten, H., Quantum transport in semiconductor nanostructures, (Ehrenreich, H.; Turnbull, D., Semiconductor Heterostructures and Nanostructures. Semiconductor Heterostructures and Nanostructures, Solid State Physics, vol. 44, 1991, Academic Press), 1-228
[362] Beenakker, C. W.J., Random-matrix theory of quantum transport, Rev. Modern Phys., 69, 731-808, 1997
[363] Nazarov, Y. V.; Blanter, Y. M., Quantum Transport: Introduction To Nanoscience, 2009, Cambridge University Press
[364] Sánchez, D.; Moskalets, M., Quantum transport in mesoscopic systems, Entropy, 22, 9, 2020
[365] Giazotto, F.; Heikkilä, T. T.; Luukanen, A.; Savin, A. M.; Pekola, J. P., Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications, Rev. Modern Phys., 78, 217-274, 2006
[366] Muhonen, J. T.; Meschke, M.; Pekola, J. P., Micrometre-scale refrigerators, Rep. Progr. Phys., 75, 4, Article 046501 pp., 2012
[367] Fornieri, A.; Giazotto, F., Towards phase-coherent caloritronics in superconducting circuits, Nat. Nanotechnol., 12, 944-952, 2017
[368] Whitney, R.; Sánchez, R.; Splettstoesser, J., Quantum thermodynamics of nanoscale thermoelectrics and electronic devices, (Binder, F.; Correa, L.; Gogolin, C.; Anders, J.; Adesso, G., Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, Vol. 195, 2018, Springer Cham), 1-228
[369] Buffoni, L.; Campisi, M., Thermodynamics of a quantum annealer, Quantum Sci. Technol., 5, 3, Article 035013 pp., 2020
[370] van Wees, B. J.; van Houten, H.; Beenakker, C. W.J.; Williamson, J. G.; Kouwenhoven, L. P.; van der Marel, D.; Foxon, C. T., Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett., 60, 848-850, 1988
[371] Büttiker, M., Quantized transmission of a saddle-point constriction, Phys. Rev. B, 41, 7906-7909, 1990
[372] van Houten, H.; Molenkamp, L. W.; Beenakker, C. W.J.; Foxon, C. T., Thermo-electric properties of quantum point contacts, Semicond. Sci. Technol., 7, 3B, B215-B221, 1992
[373] Kheradsoud, S.; Dashti, N.; Misiorny, M.; Potts, P. P.; Splettstoesser, J.; Samuelsson, P., Power, efficiency and fluctuations in a quantum point contact as steady-state thermoelectric heat engine, Entropy, 21, 8, 2019
[374] Pershoguba, S. S.; Veness, T.; Glazman, L. I., Landauer formula for a superconducting quantum point contact, Phys. Rev. Lett., 123, Article 067001 pp., 2019
[375] Pershoguba, S. S.; Glazman, L. I., Thermopower and thermal conductance of a superconducting quantum point contact, Phys. Rev. B, 99, Article 134514 pp., 2019
[376] Yang, J.; Elouard, C.; Splettstoesser, J.; Sothmann, B.; Sánchez, R.; Jordan, A. N., Thermal transistor and thermometer based on coulomb-coupled conductors, Phys. Rev. B, 100, Article 045418 pp., 2019
[377] Beenakker, C. W.J., Theory of coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B, 44, 1646-1656, 1991
[378] Beenakker, C. W.J.; Staring, A. A.M., Theory of the thermopower of a quantum dot, Phys. Rev. B, 46, 9667-9676, 1992
[379] Esposito, M.; Lindenberg, K.; den Broeck, C. V., Thermoelectric efficiency at maximum power in a quantum dot, Europhys. Lett., 85, 6, 60010, 2009
[380] Nakpathomkun, N.; Xu, H. Q.; Linke, H., Thermoelectric efficiency at maximum power in low-dimensional systems, Phys. Rev. B, 82, Article 235428 pp., 2010
[381] Erdman, P. A.; Mazza, F.; Bosisio, R.; Benenti, G.; Fazio, R.; Taddei, F., Thermoelectric properties of an interacting quantum dot based heat engine, Phys. Rev. B, 95, Article 245432 pp., 2017
[382] Staring, A. A.M.; Molenkamp, L. W.; Alphenaar, B. W.; van Houten, H.; Buyk, O. J.A.; Mabesoone, M. A.A.; Beenakker, C. W.J.; Foxon, C. T., Coulomb-blockade oscillations in the thermopower of a quantum dot, Europhys. Lett., 22, 1, 57-62, 1993
[383] Svensson, S. F.; Persson, A. I.; Hoffmann, E. A.; Nakpathomkun, N.; Nilsson, H. A.; Xu, H. Q.; Samuelson, L.; Linke, H., Lineshape of the thermopower of quantum dots, New J. Phys., 14, 3, Article 033041 pp., 2012
[384] Josefsson, M.; Svilans, A.; Burke, A. M.; Hoffmann, E. A.; Fahlvik, S.; Thelander, C.; Leijnse, M.; Linke, H., A quantum-dot heat engine operating close to the thermodynamic efficiency limits, Nat. Nanotechnol., 13, 920-924, 2018
[385] Domínguez-Adame, F.; Martín-González, M.; Sánchez, D.; Cantarero, A., Nanowires: A route to efficient thermoelectric devices, Physica E, 113, 213-225, 2019
[386] Hewson, A. C., The Kondo Problem to Heavy Fermions, 1993, Cambridge University Press
[387] Dutt, P.; Le Hur, K., Strongly correlated thermoelectric transport beyond linear response, Phys. Rev. B, 88, Article 235133 pp., 2013
[388] Zimbovskaya, N. A., The effect of coulomb interactions on nonlinear thermovoltage and thermocurrent in quantum dots, J. Chem. Phys., 142, 24, Article 244310 pp., 2015
[389] Svensson, S. F.; Hoffmann, E. A.; Nakpathomkun, N.; Wu, P. M.; Xu, H. Q.; Nilsson, H. A.; Sánchez, D.; Kashcheyevs, V.; Linke, H., Nonlinear thermovoltage and thermocurrent in quantum dots, New J. Phys., 15, 10, Article 105011 pp., 2013
[390] Sierra, M. A.; Sánchez, D., Strongly nonlinear thermovoltage and heat dissipation in interacting quantum dots, Phys. Rev. B, 90, Article 115313 pp., 2014
[391] Sánchez, D.; López, R., Nonlinear phenomena in quantum thermoelectrics and heat, C. R. Phys., 17, 10, 1060-1071, 2016, mesoscopic thermoelectric phenomena / Phénomènes thermoélectriques mésoscopiques
[392] Galperin, M.; Ratner, M. A.; Nitzan, A., Molecular transport junctions: vibrational effects, J. Phys.: Condens. Matter., 19, 10, Article 103201 pp., 2007
[393] Dubi, Y.; Di Ventra, M., Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions, Rev. Modern Phys., 83, 131-155, 2011
[394] Lee, W.; Kim, K.; Jeong, W.; Zotti, L. A.; Pauly, F.; Cuevas, J. C.; Reddy, P., Heat dissipation in atomic-scale junctions, Nature, 498, 209-212, 2013
[395] Perroni, C. A.; Ninno, D.; Cataudella, V., Thermoelectric efficiency of molecular junctions, J. Phys.: Condens. Matter., 28, 37, Article 373001 pp., 2016
[396] Datta, S., Quantum Transport: Atom to Transistor, 2005, Cambridge University Press · Zbl 1098.81002
[397] Tesser, L.; Bhandari, B.; Erdman, P. A.; Paladino, E.; Fazio, R.; Taddei, F., Heat rectification through single and coupled quantum dots, New J. Phys., 24, 3, Article 035001 pp., 2022
[398] Camsari, K. Y.; Chowdhury, S.; Datta, S., The nonequilibrium green function (negf) method, (Springer Handbook of Semiconductor Devices, 2023, Springer), 1583-1599
[399] Härtle, R.; Benesch, C.; Thoss, M., Multimode vibrational effects in single-molecule conductance: A nonequilibrium green’s function approach, Phys. Rev. B, 77, 20, Article 205314 pp., 2008
[400] Erpenbeck, A.; Härtle, R.; Thoss, M., Effect of nonadiabatic electronic-vibrational interactions on the transport properties of single-molecule junctions, Phys. Rev. B, 91, 19, Article 195418 pp., 2015
[401] Bhandari, B.; Fazio, R.; Taddei, F.; Arrachea, L., From nonequilibrium green’s functions to quantum master equations for the density matrix and out-of-time-order correlators: Steady-state and adiabatic dynamics, Phys. Rev. B, 104, 3, Article 035425 pp., 2021
[402] Tanimura, Y.; Kubo, R., Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath, J. Phys. Soc. Japan, 58, 1, 101-114, 1989
[403] Jin, J.; Zheng, X.; Yan, Y., Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys., 128, 23, Article 234703 pp., 2008
[404] Tanimura, Y., Numerically exact approach to open quantum dynamics: The hierarchical equations of motion (heom), J. Chem. Phys., 153, 2, Article 020901 pp., 2020
[405] Bätge, J.; Ke, Y.; Kaspar, C.; Thoss, M., Nonequilibrium open quantum systems with multiple bosonic and fermionic environments: A hierarchical equations of motion approach, Phys. Rev. B, 103, 23, Article 235413 pp., 2021
[406] Peliti, L., Statistical Mechanics in a Nutshell, 2011, Princeton University Press · Zbl 1259.82002
[407] Proesmans, K.; Cleuren, B.; Van den Broeck, C., Power-efficiency-dissipation relations in linear thermodynamics, Phys. Rev. Lett., 116, Article 220601 pp., 2016
[408] Sothmann, B.; Sánchez, R.; Jordan, A. N., Thermoelectric energy harvesting with quantum dots, Nanotechnology, 26, 3, Article 032001 pp., 2014
[409] Sánchez, R.; Büttiker, M., Optimal energy quanta to current conversion, Phys. Rev. B, 83, Article 085428 pp., 2011
[410] Roche, B.; Roulleau, P.; Jullien, T.; Jompol, Y.; Farrer, I.; Ritchie, D.; Glattli, D., Harvesting dissipated energy with a mesoscopic ratchet, Nature Commun., 6, 6738, 2015
[411] Thierschmann, H.; Sánchez, R.; Sothmann, B.; Arnold, F.; Heyn, C.; Hansen, W.; Buhmann, H.; Molenkamp, L. W., Harvesting dissipated energy with a mesoscopic ratchet, Nature Nanotechnol., 10, 854-858, 2015
[412] Prete, D.; Erdman, P. A.; Demontis, V.; Zannier, V.; Ercolani, D.; Sorba, L.; Beltram, F.; Rossella, F.; Taddei, F.; Roddaro, S., Thermoelectric conversion at 30 k in inas/inp nanowire quantum dots, Nano Lett., 19, 5, 3033-3039, 2019
[413] Jordan, A. N.; Sothmann, B.; Sánchez, R.; Büttiker, M., Powerful and efficient energy harvester with resonant-tunneling quantum dots, Phys. Rev. B, 87, Article 075312 pp., 2013
[414] Jaliel, G.; Puddy, R. K.; Sánchez, R.; Jordan, A. N.; Sothmann, B.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Smith, C. G., Experimental realization of a quantum dot energy harvester, Phys. Rev. Lett., 123, Article 117701 pp., 2019
[415] Jiang, J.-H.; Entin-Wohlman, O.; Imry, Y., Thermoelectric three-terminal hopping transport through one-dimensional nanosystems, Phys. Rev. B, 85, Article 075412 pp., 2012
[416] Jiang, J.-H.; Kulkarni, M.; Segal, D.; Imry, Y., Phonon thermoelectric transistors and rectifiers, Phys. Rev. B, 92, Article 045309 pp., 2015
[417] Mayrhofer, R. D.; Elouard, C.; Splettstoesser, J.; Jordan, A. N., Stochastic thermodynamic cycles of a mesoscopic thermoelectric engine, Phys. Rev. B, 103, Article 075404 pp., 2021
[418] Wächtler, C. W.; Strasberg, P.; Klapp, S. H.L.; Schaller, G.; Jarzynski, C., Stochastic thermodynamics of self-oscillations: the electron shuttle, New J. Phys., 21, 7, Article 073009 pp., 2019
[419] Sánchez, R.; Thierschmann, H.; Molenkamp, L. W., All-thermal transistor based on stochastic switching, Phys. Rev. B, 95, Article 241401 pp., 2017
[420] Sánchez, R.; Thierschmann, H.; Molenkamp, L. W., Single-electron thermal devices coupled to a mesoscopic gate, New J. Phys., 19, 11, Article 113040 pp., 2017
[421] Entin-Wohlman, O.; Imry, Y.; Aharony, A., Enhanced performance of joint cooling and energy production, Phys. Rev. B, 91, 5, Article 054302 pp., 2015
[422] Manzano, G.; Sánchez, R.; Silva, R.; Haack, G.; Brask, J. B.; Brunner, N.; Potts, P. P., Hybrid thermal machines: Generalized thermodynamic resources for multitasking, Phys. Rev. Res., 2, 4, Article 043302 pp., 2020
[423] Guryanova, Y.; Popescu, S.; Short, A. J.; Silva, R.; Skrzypczyk, P., Thermodynamics of quantum systems with multiple conserved quantities, Nat. Comm., 7, 1, 1-9, 2016
[424] Yunger Halpern, N.; Faist, P.; Oppenheim, J.; Winter, A., Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges, Nat. Comm., 7, 1, 1-7, 2016
[425] Cavaliere, F.; Razzoli, L.; Carrega, M.; Benenti, G.; Sassetti, M., Hybrid quantum thermal machines with dynamical couplings, iScience, 26, 3, Article 106235 pp., 2023
[426] Lu, J.; Wang, Z.; Wang, R.; Peng, J.; Wang, C.; Jiang, J.-H., Multitask quantum thermal machines and cooperative effects, Phys. Rev. B, 107, Article 075428 pp., 2023
[427] Pekola, J. P.; Karimi, B., Colloquium: Quantum heat transport in condensed matter systems, Rev. Modern Phys., 93, Article 041001 pp., 2021
[428] Tinkham, M., Introduction to Superconductivity, 1996, McGraw-Hill: McGraw-Hill New York
[429] Giazotto, F.; Martínez-Pérez, M. J., The josephson heat interferometer, Nature, 492, 401-405, 2012
[430] Marchegiani, G.; Virtanen, P.; Giazotto, F.; Campisi, M., Self-oscillating josephson quantum heat engine, Phys. Rev. Appl., 6, Article 054014 pp., 2016
[431] Vischi, F.; Carrega, M.; Virtanen, P.; Strambini, E.; Braggio, A.; Giazotto, F., Thermodynamic cycles in josephson junctions, Sci. Rep., 9, 3238, 2019
[432] Manikandan, S. K.; Giazotto, F.; Jordan, A. N., Superconducting quantum refrigerator: Breaking and rejoining cooper pairs with magnetic field cycles, Phys. Rev. Appl., 11, Article 054034 pp., 2019
[433] Marchegiani, G.; Braggio, A.; Giazotto, F., Phase-tunable thermoelectricity in a josephson junction, Phys. Rev. Res., 2, Article 043091 pp., 2020
[434] Germanese, G.; Paolucci, F.; Marchegiani, G.; Braggio, A.; Giazotto, F., Bipolar thermoelectric josephson engine, Nature Nanotechnol., 17, 10, 1084-1090, 2022
[435] Tan, Z. B.; Laitinen, A.; Kirsanov, N. S.; Galda, A.; Vinokur, V. M.; Haque, M.; Savin, A.; Golubev, D. S.; Lesovik, G. B.; Hakonen, P. J., Thermoelectric current in a graphene cooper pair splitter, Nat. Comm., 12, 138, 2021
[436] Blasi, G.; Taddei, F.; Arrachea, L.; Carrega, M.; Braggio, A., Nonlocal thermoelectricity in a superconductor-topological-insulator-superconductor junction in contact with a normal-metal probe: Evidence for helical edge states, Phys. Rev. Lett., 124, Article 227701 pp., 2020
[437] Scharf, B.; Braggio, A.; Strambini, E.; Giazotto, F.; Hankiewicz, E. M., Topological josephson heat engine, Commun. Phys., 3, 198, 2020
[438] Scharf, B.; Braggio, A.; Strambini, E.; Giazotto, F.; Hankiewicz, E. M., Thermodynamics in topological josephson junctions, Phys. Rev. Res., 3, Article 033062 pp., 2021
[439] Haack, G.; Giazotto, F., Efficient and tunable aharonov-bohm quantum heat engine, Phys. Rev. B, 100, Article 235442 pp., 2019
[440] Hofer, P. P.; Souquet, J.-R.; Clerk, A. A., Quantum heat engine based on photon-assisted cooper pair tunneling, Phys. Rev. B, 93, Article 041418 pp., 2016
[441] Lörch, N.; Bruder, C.; Brunner, N.; Hofer, P. P., Optimal work extraction from quantum states by photo-assisted cooper pair tunneling, Quantum Sci. Technol., 3, 3, Article 035014 pp., 2018
[442] Mitchison, M. T.; Woods, M. P.; Prior, J.; Huber, M., Coherence-assisted single-shot cooling by quantum absorption refrigerators, New J. Phys., 17, 11, Article 115013 pp., 2015
[443] Hofer, P. P.; Perarnau-Llobet, M.; Brask, J. B.; Silva, R.; Huber, M.; Brunner, N., Autonomous quantum refrigerator in a circuit qed architecture based on a josephson junction, Phys. Rev. B, 94, Article 235420 pp., 2016
[444] Verteletsky, K.; Mølmer, K., Revealing the strokes of autonomous quantum heat engines with work and heat fluctuations, Phys. Rev. A, 101, Article 010101 pp., 2020
[445] Sánchez, R.; Burset, P.; Yeyati, A. L., Cooling by cooper pair splitting, Phys. Rev. B, 98, Article 241414 pp., 2018
[446] Kirsanov, N. S.; Tan, Z. B.; Golubev, D. S.; Hakonen, P. J.; Lesovik, G. B., Heat switch and thermoelectric effects based on cooper-pair splitting and elastic cotunneling, Phys. Rev. B, 99, Article 115127 pp., 2019
[447] Hussein, R.; Governale, M.; Kohler, S.; Belzig, W.; Giazotto, F.; Braggio, A., Nonlocal thermoelectricity in a cooper-pair splitter, Phys. Rev. B, 99, Article 075429 pp., 2019
[448] Hofstetter, L.; Csonka, S.; Nygård, J.; Schönenberger, C., Cooper pair splitter realized in a two-quantum-dot y-junction, Nature, 461, 960-963, 2009
[449] Ranni, A.; Mannila, E. T.; Eriksson, A.; Golubev, D. S.; Pekola, J. P.; Maisi, V. F., Local and nonlocal two-electron tunneling processes in a cooper pair splitter, Phys. Rev. Lett., 129, Article 207703 pp., 2022
[450] Tabatabaei, S. M.; Sánchez, D.; Yeyati, A. L.; Sánchez, R., Nonlocal quantum heat engines made of hybrid superconducting devices, Phys. Rev. B, 106, Article 115419 pp., 2022
[451] Marchegiani, G.; Braggio, A.; Giazotto, F., Nonlinear thermoelectricity with electron-hole symmetric systems, Phys. Rev. Lett., 124, Article 106801 pp., 2020
[452] Marchegiani, G.; Braggio, A.; Giazotto, F., Superconducting nonlinear thermoelectric heat engine, Phys. Rev. B, 101, Article 214509 pp., 2020
[453] Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P., The role of quantum information in thermodynamics—a topical review, J. Phys. A, 49, 14, Article 143001 pp., 2016 · Zbl 1342.82055
[454] Leff, H.; Rex, A. F., Maxwell’s Demon 2 Entropy, Classical and Quantum Information, Computing, 2002, CRC Press
[455] Maruyama, K.; Nori, F.; Vedral, V., Colloquium: The physics of maxwell’s demon and information, Rev. Modern Phys., 81, 1-23, 2009 · Zbl 1205.82005
[456] Szilard, L., Z. Phys., 53, 840, 1929 · JFM 55.0488.06
[457] Landauer, R., Irreversibility and heat generation in the computing process, IBM J. Res. Dev., 5, 183-191, 1961 · Zbl 1160.68305
[458] Bennett, C., The thermodynamics of computation—a review, Internat. J. Theoret. Phys., 21, 905-940, 1982
[459] Deffner, S.; Campbell, S., Quantum Thermodynamics, 2053-2571, 2019, Morgan & Claypool Publishers · Zbl 1422.80001
[460] Lutz, E.; Ciliberto, S., Information: From maxwell’s demon to landauer’s eraser, Phys. Today, 68, 9, 30-35, 2015
[461] Ciliberto, S., Landauer’s Bound and Maxwell’s Demon, 87-112, 2021, Springer International Publishing: Springer International Publishing Cham
[462] Sagawa, T.; Ueda, M., Second law of thermodynamics with discrete quantum feedback control, Phys. Rev. Lett., 100, Article 080403 pp., 2008
[463] Sagawa, T.; Ueda, M., Minimal energy cost for thermodynamic information processing: Measurement and information erasure, Phys. Rev. Lett., 102, Article 250602 pp., 2009
[464] Sagawa, T.; Ueda, M., Generalized jarzynski equality under nonequilibrium feedback control, Phys. Rev. Lett., 104, Article 090602 pp., 2010
[465] Esposito, M.; den Broeck, C. V., Second law and landauer principle far from equilibrium, Europhys. Lett., 95, 4, 40004, 2011
[466] Mandal, D.; Jarzynski, C., Work and information processing in a solvable model of maxwell’s demon, Proc. Natl. Acad. Sci., 109, 29, 11641-11645, 2012
[467] Sagawa, T.; Ueda, M., Nonequilibrium thermodynamics of feedback control, Phys. Rev. E, 85, Article 021104 pp., 2012
[468] Barato, A. C.; Seifert, U., An autonomous and reversible maxwell’s demon, Europhys. Lett., 101, 6, 60001, 2013
[469] Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M., Thermodynamics of a physical model implementing a maxwell demon, Phys. Rev. Lett., 110, Article 040601 pp., 2013
[470] Horowitz, J. M.; Esposito, M., Thermodynamics with continuous information flow, Phys. Rev. X, 4, Article 031015 pp., 2014
[471] Faist, P.; Dupuis, F.; Oppenheim, J.; Renner, R., The minimal work cost of information processing, Nature Commun., 6, 1, 1-8, 2015
[472] Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E., Experimental verification of landauer’s principle linking information and thermodynamics, Nat. Phys., 483, 187-189, 2012
[473] Koski, J. V.; Maisi, V. F.; Sagawa, T.; Pekola, J. P., Experimental observation of the role of mutual information in the nonequilibrium dynamics of a maxwell demon, Phys. Rev. Lett., 113, Article 030601 pp., 2014
[474] Koski, J. V.; Maisi, V. F.; Pekola, J. P.; Averin, D. V., Experimental realization of a szilard engine with a single electron, Proc. Natl. Acad. Sci., 111, 38, 13786-13789, 2014
[475] Roldan, E.; Martinez, I. A.; Parrondo, J. M.R.; Petrov, D., Universal features in the energetics of symmetry breaking, Nat. Phys., 10, 457-461, 2014
[476] Koski, J. V.; Kutvonen, A.; Khaymovich, I. M.; Ala-Nissila, T.; Pekola, J. P., On-chip maxwell’s demon as an information-powered refrigerator, Phys. Rev. Lett., 115, Article 260602 pp., 2015
[477] Vidrighin, M. D.; Dahlsten, O.; Barbieri, M.; Kim, M. S.; Vedral, V.; Walmsley, I. A., Photonic maxwell’s demon, Phys. Rev. Lett., 116, Article 050401 pp., 2016 · Zbl 1356.80004
[478] Ciliberto, S., Experiments in stochastic thermodynamics: Short history and perspectives, Phys. Rev. X, 7, Article 021051 pp., 2017
[479] Admon, T.; Rahav, S.; Roichman, Y., Experimental realization of an information machine with tunable temporal correlations, Phys. Rev. Lett., 121, 18, Article 180601 pp., 2018
[480] Toyabe, S.; Sagawa, T.; Ueda, M.; Muneyuki, E.; Sano, M., Experimental demonstration of information-to-energy conversion and validation of the generalized jarzynski equality, Nat. Phys., 6, 988-992, 2010
[481] Ribezzi-Crivellari, M.; Ritort, F., Large work extraction and the landauer limit in a continuous maxwell demon, Nat. Phys., 15, 660-664, 2019
[482] Manzano, G.; Subero, D.; Maillet, O.; Fazio, R.; Pekola, J. P.; Roldán, E., Thermodynamics of gambling demons, Phys. Rev. Lett., 126, Article 080603 pp., 2021
[483] Morikuni, Y.; Tasaki, H., Quantum jarzynski-sagawa-ueda relations, J. Stat. Phys., 143, 1-10, 2011 · Zbl 1221.82063
[484] Funo, K.; Watanabe, Y.; Ueda, M., Thermodynamic work gain from entanglement, Phys. Rev. A, 88, Article 052319 pp., 2013
[485] Funo, K.; Watanabe, Y.; Ueda, M., Integral quantum fluctuation theorems under measurement and feedback control, Phys. Rev. E, 88, Article 052121 pp., 2013, URL https://link.aps.org/doi/10.1103/PhysRevE.88.052121
[486] Albash, T.; Lidar, D. A.; Marvian, M.; Zanardi, P., Fluctuation theorems for quantum processes, Phys. Rev. E, 88, Article 032146 pp., 2013
[487] Sánchez, R.; Splettstoesser, J.; Whitney, R. S., Nonequilibrium system as a demon, Phys. Rev. Lett., 123, 21, Article 216801 pp., 2019
[488] Lu, J.; Jiang, J.-H.; Imry, Y., Unconventional four-terminal thermoelectric transport due to inelastic transport: Cooling by transverse heat current, transverse thermoelectric effect, and maxwell demon, Phys. Rev. B, 103, Article 085429 pp., 2021
[489] Whitney, R. S., Illusory cracks in the second law of thermodynamics in quantum nanoelectronics, 2023, arXiv preprint arXiv:2304.03106
[490] Korzekwa, K.; Lostaglio, M.; Oppenheim, J.; Jennings, D., The extraction of work from quantum coherence, New J. Phys., 18, 2, Article 023045 pp., 2016 · Zbl 1456.81078
[491] Kammerlander, P.; Anders, J., Coherence and measurement in quantum thermodynamics, Sci. Rep., 6, 22174, 2016
[492] Ghosh, A.; Mukherjee, V.; Niedenzu, W.; Kurizki, G., Are quantum thermodynamic machines better than their classical counterparts?, Eur. Phys. J. Spec. Top., 227, 15, 2043-2051, 2019
[493] Peterson, J. P.S.; Sarthour, R. S.; Souza, A. M.; Oliveira, I. S.; Goold, J.; Modi, K.; Soares-Pinto, D. O.; Céleri, L. C., Experimental demonstration of information to energy conversion in a quantum system at the landauer limit, Proc. R. Soc. A, 472, 2188, Article 20150813 pp., 2016
[494] Gaudenzi, R.; Burzurí, E.; Maegawa, S.; van der Zant, H. S.J.; Luis, F., Quantum landauer erasure with a molecular nanomagnet, Nat. Phys., 14, 565-568, 2018
[495] Konopik, M.; Friedenberger, A.; Kiesel, N.; Lutz, E., Nonequilibrium information erasure below kTln2, Europhys. Lett., 131, 6, 60004, 2020
[496] Ciampini, M. A.; Wenzl, T.; Konopik, M.; Thalhammer, G.; Aspelmeyer, M.; Lutz, E.; Kiesel, N., Experimental nonequilibrium memory erasure beyond landauer’s bound, 2021, arXiv preprint arXiv:2107.04429
[497] Van Vu, T.; Saito, K., Finite-time quantum landauer principle and quantum coherence, Phys. Rev. Lett., 128, Article 010602 pp., 2022
[498] Lloyd, S., Phys. Rev. A, 56, 3374, 1997
[499] Elouard, C.; Herrera-Martí, D. A.; Clusel, M.; Auffèves, A., The role of quantum measurement in stochastic thermodynamics, NPJ Quantum Inf., 3, 9, 2017
[500] Kim, S. W.; Sagawa, T.; De Liberato, S.; Ueda, M., Quantum szilard engine, Phys. Rev. Lett., 106, Article 070401 pp., 2011
[501] Rio, L.d.; Åberg, J.; Renner, R.; Dahlsten, O.; Vedral, V., The thermodynamic meaning of negative entropy, Nature, 474, 7349, 61-63, 2011
[502] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information: 10th Anniversary Edition, 2010, Cambridge University Press · Zbl 1288.81001
[503] Morris, B.; Lami, L.; Adesso, G., Assisted work distillation, Phys. Rev. Lett., 122, 13, Article 130601 pp., 2019
[504] Beyer, K.; Luoma, K.; Strunz, W. T., Steering heat engines: A truly quantum maxwell demon, Phys. Rev. Lett., 123, Article 250606 pp., 2019
[505] Wiseman, H. M.; Jones, S. J.; Doherty, A. C., Steering, entanglement, nonlocality, and the einstein-podolsky-rosen paradox, Phys. Rev. Lett., 98, Article 140402 pp., 2007 · Zbl 1228.81078
[506] Cavalcanti, D.; Skrzypczyk, P., Quantum steering: a review with focus on semidefinite programming, Rep. Progr. Phys., 80, 2, Article 024001 pp., 2016
[507] Uola, R.; Costa, A. C.S.; Nguyen, H. C.; Gühne, O., Quantum steering, Rev. Modern Phys., 92, Article 015001 pp., 2020
[508] Ji, W.; Chai, Z.; Wang, M.; Guo, Y.; Rong, X.; Shi, F.; Ren, C.; Wang, Y.; Du, J., Spin quantum heat engine quantified by quantum steering, Phys. Rev. Lett., 128, Article 090602 pp., 2022
[509] Åberg, J., Catalytic coherence, Phys. Rev. Lett., 113, 15, Article 150402 pp., 2014
[510] Camati, P. A.; Peterson, J. P.S.; Batalhão, T. B.; Micadei, K.; Souza, A. M.; Sarthour, R. S.; Oliveira, I. S.; Serra, R. M., Experimental rectification of entropy production by maxwell’s demon in a quantum system, Phys. Rev. Lett., 117, Article 240502 pp., 2016
[511] Cottet, N.; Jezouin, S.; Bretheau, L.; Campagne-Ibarcq, P.; Ficheux, Q.; Anders, J.; Auffèves, A.; Azouit, R.; Rouchon, P.; Huard, B., Observing a quantum maxwell demon at work, Proc. Natl. Acad. Sci., 114, 29, 7561-7564, 2017
[512] Masuyama, Y.; Funo, K.; Murashita, Y.; Noguchi, A.; Kono, S.; Tabuchi, Y.; Yamazaki, R.; Ueda, M.; Nakamura, Y., Information-to-work conversion by maxwell’s demon in a superconducting circuit quantum electrodynamical system, Nature Commun., 9, 1, 1291, 2018
[513] Wang, W.-B.; Chang, X.-Y.; Wang, F.; Hou, P.-Y.; Huang, Y.-Y.; Zhang, W.-G.; Ouyang, X.-L.; Huang, X.-Z.; Zhang, Z.-Y.; Wang, H.-Y.; He, L.; Duan, L.-M., Realization of quantum maxwell’s demon with solid-state spins, Chin. Phys. Lett., 35, 4, Article 040301 pp., 2018
[514] Naghiloo, M.; Alonso, J. J.; Romito, A.; Lutz, E.; Murch, K. W., Information gain and loss for a quantum maxwell’s demon, Phys. Rev. Lett., 121, Article 030604 pp., 2018
[515] Naghiloo, M.; Tan, D.; Harrington, P. M.; Alonso, J. J.; Lutz, E.; Romito, A.; Murch, K. W., Heat and work along individual trajectories of a quantum bit, Phys. Rev. Lett., 124, Article 110604 pp., 2020
[516] Najera-Santos, B.-L.; Camati, P. A.; Métillon, V.; Brune, M.; Raimond, J.-M.; Auffèves, A.; Dotsenko, I., Autonomous maxwell’s demon in a cavity qed system, Phys. Rev. Res., 2, Article 032025 pp., 2020
[517] Hernández-Gómez, S.; Gherardini, S.; Staudenmaier, N.; Poggiali, F.; Campisi, M.; Trombettoni, A.; Cataliotti, F.; Cappellaro, P.; Fabbri, N., Autonomous dissipative maxwell’s demon in a diamond spin qutrit, PRX Quantum, 3, Article 020329 pp., 2022
[518] Wiseman, H.; Milburn, G., Quantum Measurement and Control, 2010, Cambridge University Press · Zbl 1350.81004
[519] Gelbwaser-Klimovsky, D.; Erez, N.; Alicki, R.; Kurizki, G., Work extraction via quantum nondemolition measurements of qubits in cavities: Non-markovian effects, Phys. Rev. A, 88, Article 022112 pp., 2013
[520] Erez, N.; Gordon, G.; Nest, M.; Kurizki, G., Thermodynamic control by frequent quantum measurements, Nature, 452, 7188, 724-727, 2008
[521] Auffèves, A., A short story of quantum and information thermodynamics, SciPost Phys. Lect. Notes, 27, 2021
[522] Elouard, C.; Jordan, A. N., Efficient quantum measurement engines, Phys. Rev. Lett., 120, Article 260601 pp., 2018
[523] Elouard, C.; Herrera-Martí, D.; Huard, B.; Auffèves, A., Extracting work from quantum measurement in maxwell’s demon engines, Phys. Rev. Lett., 118, Article 260603 pp., 2017
[524] Yi, J.; Talkner, P.; Kim, Y. W., Single-temperature quantum engine without feedback control, Phys. Rev. E, 96, Article 022108 pp., 2017
[525] Ding, X.; Yi, J.; Kim, Y. W.; Talkner, P., Measurement-driven single temperature engine, Phys. Rev. E, 98, Article 042122 pp., 2018
[526] Buffoni, L.; Solfanelli, A.; Verrucchi, P.; Cuccoli, A.; Campisi, M., Quantum measurement cooling, Phys. Rev. Lett., 122, Article 070603 pp., 2019
[527] Opatrnỳ, T.; Misra, A.; Kurizki, G., Work generation from thermal noise by quantum phase-sensitive observation, Phys. Rev. Lett., 127, 4, Article 040602 pp., 2021
[528] Misra, A.; Opatrnỳ, T.; Kurizki, G., Work extraction from single-mode thermal noise by measurements: How important is information?, Phys. Rev. E, 106, 5, Article 054131 pp., 2022
[529] Seah, S.; Nimmrichter, S.; Scarani, V., Maxwell’s lesser demon: A quantum engine driven by pointer measurements, Phys. Rev. Lett., 124, Article 100603 pp., 2020
[530] Bresque, L.; Camati, P. A.; Rogers, S.; Murch, K.; Jordan, A. N.; Auffèves, A., Two-qubit engine fueled by entanglement and local measurements, Phys. Rev. Lett., 126, Article 120605 pp., 2021
[531] Jordan, A. N.; Elouard, C.; Auffèves, A., Quantum measurement engines and their relevance for quantum interpretations, Quantum Stud.: Math. Found., 7, 203-215, 2020
[532] Manikandan, S. K.; Elouard, C.; Murch, K. W.; Auffèves, A.; Jordan, A. N., Efficiently fueling a quantum engine with incompatible measurements, Phys. Rev. E, 105, Article 044137 pp., 2022
[533] Son, J.; Talkner, P.; Thingna, J., Monitoring quantum otto engines, PRX Quantum, 2, Article 040328 pp., 2021
[534] Linpeng, X.; Bresque, L.; Maffei, M.; Jordan, A. N.; Auffèves, A.; Murch, K. W., Energetic cost of measurements using quantum, coherent, and thermal light, Phys. Rev. Lett., 128, Article 220506 pp., 2022
[535] Micadei, K.; Peterson, J. P.S.; Souza, A. M.; Sarthour, R. S.; Oliveira, I. S.; Landi, G. T.; Batalhão, T. B.; Serra, R. M.; Lutz, E., Reversing the direction of heat flow using quantum correlations, Nature Commun., 10, 2456, 2019
[536] Brunner, N.; Huber, M.; Linden, N.; Popescu, S.; Silva, R.; Skrzypczyk, P., Entanglement enhances cooling in microscopic quantum refrigerators, Phys. Rev. E, 89, 3, Article 032115 pp., 2014
[537] Brask, J. B.; Brunner, N., Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement, Phys. Rev. E, 92, Article 062101 pp., 2015
[538] Kamimura, S.; Hakoshima, H.; Matsuzaki, Y.; Yoshida, K.; Tokura, Y., Quantum-enhanced heat engine based on superabsorption, Phys. Rev. Lett., 128, Article 180602 pp., 2022
[539] Plenio, M. B.; Huelga, S. F.; Beige, A.; Knight, P. L., Cavity-loss-induced generation of entangled atoms, Phys. Rev. A, 59, 2468-2475, 1999
[540] Verstraete, F.; Wolf, M. M.; Ignacio Cirac, J., Quantum computation and quantum-state engineering driven by dissipation, Nature Phys., 5, 9, 633-636, 2009
[541] Brask, J. B.; Haack, G.; Brunner, N.; Huber, M., Autonomous quantum thermal machine for generating steady-state entanglement, New J. Phys., 17, 11, Article 113029 pp., 2015 · Zbl 1452.81030
[542] Tavakoli, A.; Haack, G.; Huber, M.; Brunner, N.; Brask, J. B., Heralded generation of maximal entanglement in any dimension via incoherent coupling to thermal baths, Quantum, 2, 73, 2018
[543] Tacchino, F.; Auffèves, A.; Santos, M. F.; Gerace, D., Steady state entanglement beyond thermal limits, Phys. Rev. Lett., 120, Article 063604 pp., 2018
[544] Bohr Brask, J.; Clivaz, F.; Haack, G.; Tavakoli, A., Operational nonclassicality in minimal autonomous thermal machines, Quantum, 6, 672, 2022
[545] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Modern Phys., 81, 865-942, 2009 · Zbl 1205.81012
[546] Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S., Bell nonlocality, Rev. Modern Phys., 86, 2, 419, 2014
[547] Hofer, P. P.; Perarnau-Llobet, M.; Miranda, L. D.M.; Haack, G.; Silva, R.; Brask, J. B.; Brunner, N., Markovian master equations for quantum thermal machines: local versus global approach, New J. Phys., 19, 12, Article 123037 pp., 2017
[548] De Chiara, G.; Landi, G.; Hewgill, A.; Reid, B.; Ferraro, A.; Roncaglia, A. J.; Antezza, M., Reconciliation of quantum local master equations with thermodynamics, New J. Phys., 20, 11, Article 113024 pp., 2018
[549] Khandelwal, S.; Brunner, N.; Haack, G., Signatures of liouvillian exceptional points in a quantum thermal machine, PRX Quantum, 2, 4, Article 040346 pp., 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.