×

High-performance evaluation of finite element variational forms via commuting diagrams and duality. (English) Zbl 1371.65120

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Y20 Complexity and performance of numerical algorithms
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35Q61 Maxwell equations
Full Text: DOI

References:

[1] Mark Ainsworth, Gaelle Andriamaro, and Oleg Davydov. 2011. Bernstein-Bézier finite elements of arbitrary order and optimal assembly procedures. SIAM J. Sci. Comput. 33, 6, 3087–3109. · Zbl 1237.65120 · doi:10.1137/11082539X
[2] Douglas N. Arnold and Ragnar Winther. 2002. Mixed finite elements for elasticity. Numer. Math. 92, 3, 401–419. · Zbl 1090.74051 · doi:10.1007/s002110100348
[3] W. Bangerth, R. Hartmann, and G. Kanschat. 2007. Deal.II — A general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33, 4, 1–27. · Zbl 1122.53020 · doi:10.1090/S0002-9947-06-03836-0
[4] Wolfgang Bangerth and Guido Kanschat. 2013. Deal.II tutorial, “The step-3 tutorial program”. http://www.dealii.org/8.0.0/doxygen/tutorial/index.html. (2013).
[5] Pavel Bochev, H. Carter Edwards, Robert C. Kirby, Kara Peterson, and Denis Ridzal. 2012. Solving PDEs with Intrepid. Sci. Prog. 20, 2, 151–180.
[6] Pavel B. Bochev and Max D. Gunzburger. 2009. Least-Squares Finite Element Methods. Applied Mathematical Sciences, Vol. 166, Springer, New York. xxii+660 pages. DOI:http://dx.doi.org/10.1007/b13382 · Zbl 1168.65067 · doi:10.1007/b13382
[7] Michael A. Heroux, Roscoe A. Bartlett, Victoria E. Howle, Robert J. Hoekstra, Jonathon J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. 2005. An overview of the Trilinos project. ACM Trans. Math. Softw. 31, 3, 397–423. · Zbl 1136.65354 · doi:10.1145/1089014.1089021
[8] Jan S. Hesthaven and Tim Warburton. 2008. Nodal Discontinuous Galerkin Methods. Texts in Applied Mathematics, Vol. 54, Springer, New York. xiv+500 pages. DOI:http://dx.doi.org/10.1007/978-0-387-72067-8 Algorithms, analysis, and applications. · Zbl 1134.65068 · doi:10.1007/978-0-387-72067-8
[9] J. J. Heys, T. A. Manteuffel, S. F. McCormick, and L. N. Olson. 2005. Algebraic multigrid for higher-order finite elements. J. Comput. Phys. 204, 2, 520–532. DOI:http://dx.doi.org/10.1016/j.jcp.2004.10.021 · Zbl 1060.65673 · doi:10.1016/j.jcp.2004.10.021
[10] Robert C. Kirby. 2011. Fast simplicial finite element algorithms using Bernstein polynomials. Numer. Math. 117, 4, 631–652. · Zbl 1211.65156 · doi:10.1007/s00211-010-0327-2
[11] Robert C. Kirby, Matthew G. Knepley, Anders Logg, and L. Ridgway Scott. 2005. Optimizing the evaluation of finite element matrices. SIAM J. Sci. Comput. 27, 3, 741–758 (electronic). · Zbl 1091.65114 · doi:10.1137/040607824
[12] Robert C. Kirby and Anders Logg. 2006. A compiler for variational forms. ACM Trans. Math. Softw. 32, 3, 417–444. · doi:10.1145/1163641.1163644
[13] Robert C. Kirby, Anders Logg, L. Ridgway Scott, and Andy R. Terrel. 2006. Topological optimization of the evaluation of finite element matrices. SIAM J. Sci. Comput. 28, 1, 224–240 (electronic). · Zbl 1104.65324 · doi:10.1137/050635547
[14] Anders Logg, Kent-Andre Mardal, and Garth N. Wells. 2012. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Vol. 84, Springer. · Zbl 1247.65105 · doi:10.1007/978-3-642-23099-8
[15] Kevin Long, Robert C. Kirby, and Bart van Bloemen Waanders. 2010. Unified embedded parallel finite element computations via software-based Fréchet differentiation. SIAM J. Sci. Comput. 32, 6, 3323–3351. DOI:http://dx.doi.org/10.1137/09076920X · Zbl 1221.65306 · doi:10.1137/09076920X
[16] J.-C. Nédélec. 1980. Mixed finite elements in <b>R</b><sup>3</sup>. Numer. Math. 35, 3, 315–341.
[17] K. B. Ølgaard and G. N. Wells. 2010. Optimisations for quadrature representations of finite element tensors through automated code generation. ACM Trans. Math. Softw. 37, 1 (2010). http://dx.doi.org/10.1145/1644001.1644009 · Zbl 1364.65063 · doi:10.1145/1644001.1644009
[18] OpenBlas 2013. OpenBLAS homepage. http://xianyi.github.com/OpenBLAS.
[19] Steven A. Orszag. 1979. Spectral methods for problems in complex geometries. In Numerical Methods for Partial Differential Equations (Proceedings of the Advanced Seminar of the Mathematical Research Center, University of Wisconsin, 1978). Mathematical Research Center, University Wisconsin, Vol. 42, Academic Press, New York, 273–305.
[20] Marie E. Rognes, Robert C. Kirby, and Anders Logg. 2009. Efficient assembly of H(div) and H(curl) conforming finite elements. SIAM J. Sci. Comput. 31, 6, 4130–4151. · Zbl 1206.65248 · doi:10.1137/08073901X
[21] R. Clint Whaley and Jack J. Dongarra. 1998. Automatically tuned linear algebra software. In Proceedings of the ACM/IEEE Conference on Supercomputing (CDROM). ACM, IEEE Computer Society, 1–27.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.