×

Visualising quantum effective action calculations in zero dimensions. (English) Zbl 1509.81558

Summary: We present an explicit treatment of the two-particle-irreducible (2PI) effective action for a zero-dimensional quantum field theory. The advantage of this simple playground is that we are required to deal only with functions rather than functionals, making complete analytic approximations accessible and full numerical evaluation of the exact result possible. Moreover, it permits us to plot intuitive graphical representations of the behaviour of the effective action, as well as the objects out of which it is built. We illustrate the subtleties of the behaviour of the sources and their convex-conjugate variables, and their relation to the various saddle points of the path integral. With this understood, we describe the convexity of the 2PI effective action and provide a comprehensive explanation of how the Maxwell construction arises in the case of multiple, classically stable saddle points, finding results that are consistent with previous studies of the one-particle-irreducible (1PI) effective action.

MSC:

81T08 Constructive quantum field theory
81T10 Model quantum field theories

References:

[1] Jackiw R 1974 Functional evaluation of the effective potential Phys. Rev. D 9 1686-701 · doi:10.1103/PhysRevD.9.1686
[2] Cornwall J M, Jackiw R and Tomboulis E 1974 Effective action for composite operators Phys. Rev. D 10 2428-45 · Zbl 1110.81324 · doi:10.1103/PhysRevD.10.2428
[3] Schwinger J S 1961 Brownian motion of a quantum oscillator J. Math. Phys.2 407-32 · Zbl 0098.43503 · doi:10.1063/1.1703727
[4] Keldysh L V 1964 Diagram technique for nonequilibrium processes Zh. Eksp. Teor. Fiz.47 1515-27
[5] Keldysh L V 1965 Sov. Phys.—JETP20 1018-26
[6] Jordan R D 1986 Effective field equations for expectation values Phys. Rev. D 33 444-54 · doi:10.1103/PhysRevD.33.444
[7] Calzetta E and Hu B L 1988 Nonequilibrium quantum fields: closed-time-path effective action, Wigner function, and Boltzmann equation Phys. Rev. D 37 2878-900 · doi:10.1103/PhysRevD.37.2878
[8] Baym G and Kadanoff L P 1961 Conservation laws and correlation functions Phys. Rev.124 287-99 · Zbl 0111.44002 · doi:10.1103/PhysRev.124.287
[9] Blaizot J P and Iancu E 2002 The quark gluon plasma: collective dynamics and hard thermal loops Phys. Rep.359 355-528 · Zbl 0983.81529 · doi:10.1016/S0370-1573(01)00061-8
[10] Berges J 2004 Introduction to nonequilibrium quantum field theory AIP Conf. Proc.739 3-62 · doi:10.1063/1.1843591
[11] Dev P S B, Di Bari P, Garbrecht B, Lavignac S, Millington P and Teresi D 2018 Flavor effects in leptogenesis Int. J. Mod. Phys. A 33 1842001 · Zbl 1381.81162 · doi:10.1142/S0217751X18420010
[12] Dev P S B, Garny M, Klaric J, Millington P and Teresi D 2018 Resonant enhancement in leptogenesis Int. J. Mod. Phys. A 33 1842003 · Zbl 1381.81163 · doi:10.1142/S0217751X18420034
[13] Prokopec T, Schmidt M G and Weinstock S 2004 Transport equations for chiral fermions to order ħ and electroweak baryogenesis: part I Ann. Phys., NY314 208-65 · Zbl 1058.82020 · doi:10.1016/j.aop.2004.06.002
[14] Morrissey D E and Ramsey-Musolf M J 2012 Electroweak baryogenesis New J. Phys.14 125003 · doi:10.1088/1367-2630/14/12/125003
[15] Wetterich C 1993 Exact evolution equation for the effective potential Phys. Lett. B 301 90-4 · doi:10.1016/0370-2693(93)90726-X
[16] Morris T R 1994 The exact renormalization group and approximate solutions Int. J. Mod. Phys. A 9 2411-50 · Zbl 0985.81604 · doi:10.1142/S0217751X94000972
[17] Berges J, Tetradis N and Wetterich C 2002 Non-perturbative renormalization flow in quantum field theory and statistical physics Phys. Rep.363 223-386 · Zbl 0994.81077 · doi:10.1016/S0370-1573(01)00098-9
[18] Alexandre J 2012 Spontaneous symmetry breaking and linear effective potentials Phys. Rev. D 86 025028 · doi:10.1103/PhysRevD.86.025028
[19] Alexandre J and Tsapalis A 2013 Maxwell construction for scalar field theories with spontaneous symmetry breaking Phys. Rev. D 87 025028 · doi:10.1103/PhysRevD.87.025028
[20] Garbrecht B and Millington P 2016 Constraining the effective action by a method of external sources Nucl. Phys. B 906 105-32 · Zbl 1334.81062 · doi:10.1016/j.nuclphysb.2016.02.022
[21] Verschelde H and Coppens M 1992 A variational approach to quantum field theory Phys. Lett. B 287 133-7 · doi:10.1016/0370-2693(92)91888-G
[22] Pilaftsis A and Teresi D 2013 Symmetry-improved CJT effective action Nucl. Phys. B 874 594-619 · Zbl 1282.81137 · doi:10.1016/j.nuclphysb.2013.06.004
[23] Coleman S R and Weinberg E J 1973 Radiative corrections as the origin of spontaneous symmetry breaking Phys. Rev. D 7 1888-910 · doi:10.1103/PhysRevD.7.1888
[24] Weinberg E J 1993 Vacuum decay in theories with symmetry breaking by radiative corrections Phys. Rev. D 47 4614-27 · doi:10.1103/PhysRevD.47.4614
[25] Garbrecht B and Millington P 2015 Self-consistent solitons for vacuum decay in radiatively generated potentials Phys. Rev. D 92 125022 · doi:10.1103/PhysRevD.92.125022
[26] Ellis J, Mavromatos N E and Skliros D P 2016 Complete normal ordering 1: foundations Nucl. Phys. B 909 840-79 · Zbl 1342.81328 · doi:10.1016/j.nuclphysb.2016.05.024
[27] Millington P and Pilaftsis A 2012 Perturbative nonequilibrium thermal field theory Phys. Rev. D 88 085009 · doi:10.1103/PhysRevD.88.085009
[28] Carrington M E 2004 The 4PI effective action for ϕ4 theory Eur. Phys. J. C 35 383-92 · doi:10.1140/epjc/s2004-01849-6
[29] Rivers R J 1984 Effective potential convexity and finite-temperature phase transitions Z. Phys. C 22 137-42 · doi:10.1007/BF01572161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.