×

A non-uniform multi-rate control strategy for a Markov chain-driven networked control system. (English) Zbl 1386.93293

Summary: In this work, a non-uniform multi-rate control strategy is applied to a kind of Networked Control System (NCS) where a wireless path tracking control for an Unmanned Ground Vehicle (UGV) is carried out. The main aims of the proposed strategy are to face time-varying network-induced delays and to avoid packet disorder. A Markov chain-driven NCS scenario will be considered, where different network load situations, and consequently, different probability density functions for the network delay are assumed. In order to assure mean-square stability for the considered NCS, a decay-rate based sufficient condition is enunciated in terms of probabilistic Linear Matrix Inequalities (LMIs). Simulation results show better control performance, and more accurate path tracking, for the scheduled (delay-dependent) controller than for the non-scheduled one (i.e. the nominal controller when delays appear). Finally, the control strategy is validated on an experimental testbed.

MSC:

93E15 Stochastic stability in control theory
93E03 Stochastic systems in control theory (general)
90B15 Stochastic network models in operations research
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
93C85 Automated systems (robots, etc.) in control theory

Software:

SeDuMi; TrueTime

References:

[2] Albertos, P.; Sala, A., Multivariable Control Systems: An Engineering Approach (2004), Springer · Zbl 1053.93001
[4] Astrom, K. J.; Hagglund, T., PID controllers: theory, design, and tuning, Instrum. Soc. Am. (1995)
[5] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, Soc. Ind. Math. (1994) · Zbl 0816.93004
[6] Cimino, M.; Pagilla, P. R., Design of linear time-invariant controllers for multirate systems, Automatica, 46, 8, 1315-1319 (2010) · Zbl 1205.93103
[7] Cloosterman, M. B.G.; van de Wouw, N.; Heemels, W.; Nijmeijer, H., Stability of networked control systems with uncertain time-varying delays, IEEE Trans. Autom. Control, 54, 7, 1575-1580 (2009) · Zbl 1367.93459
[8] Cuenca, A.; García, P.; Albertos, P.; Salt, J., A non-uniform predictor-observer for a networked control system, Int. J. Control Autom. Syst., 9, 6, 1194-1202 (2011)
[9] Cuenca, A.; Salt, J., RST controller design for a non-uniform multi-rate control system, J. Process Control, 22, 10, 1865-1877 (2012)
[10] Dong, H.; Wang, Z.; Gao, H., Distributed \(H_\infty\) filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks, IEEE Trans. Ind. Electron., 60, 10, 4665-4672 (2013)
[12] Fukao, T.; Nakagawa, H.; Adachi, N., Adaptive tracking control of a nonholonomic mobile robot, IEEE Trans. Robot. Autom., 16, 5, 609-615 (2000)
[13] Guo, G., Linear systems with medium-access constraint and markov actuator assignment, IEEE Trans. Circ. Syst. I: Regular Papers, 57, 11, 2999-3010 (2010) · Zbl 1468.93184
[14] Guo, G.; Lu, Z., Markov actuator assignment for networked control systems, Eur. J. Control, 18, 4, 323-330 (2012) · Zbl 1291.93316
[15] Guo, G.; Lu, Z.; Han, Q-L., Control with markov sensors/actuators assignment, IEEE Trans. Autom. Control, 57, 7, 1799-1804 (2012) · Zbl 1369.93691
[16] Gupta, R. A.; Chow, M-Y., Networked control system: overview and research trends, IEEE Trans. Ind. Electron., 57, 7, 2527-2535 (2010)
[17] Khargonekar, P.; Poolla, K.; Tannenbaum, A., Robust control of linear time-invariant plants using periodic compensation, IEEE Trans. Autom. Control, 30, 11, 1088-1096 (1985) · Zbl 0573.93013
[19] Li, D.; Shah, S. L.; Chen, T., Analysis of dual-rate inferential control systems, Automatica, 38, 6, 1053-1059 (2002) · Zbl 1038.93033
[20] Li, H.; Shi, Y., Network-based predictive control for constrained nonlinear systems with two-channel packet dropouts, IEEE Trans. Ind. Electron., 61, 3, 1574-1582 (2014)
[21] Liu, M.; Ho, D.; Niu, Y., Stabilization of markovian jump linear system over networks with random communication delay, Automatica, 45, 2, 416-421 (2009) · Zbl 1158.93412
[22] Lozoya, C.; Martí, P.; Velasco, M.; Fuertes, J. M.; Martín, E. X., Simulation study of a remote wireless path tracking control with delay estimation for an autonomous guided vehicle, Int. J. Adv. Manuf. Technol., 52, 5, 751-761 (2011)
[23] Lu, Z.; Guo, G., Control with sensors/actuators assigned by markov chains: transition rates partially unknown, IET Control Theory Appl., 7, 8, 1088-1097 (2013)
[24] Luan, X.; Shi, P.; Liu, C-L., Stabilization of networked control systems with random delays, IEEE Trans. Ind. Electron., 58, 9, 4323-4330 (2011)
[25] Montestruque, L. A.; Antsaklis, P. J., Stochastic stability for model-based networked control systems, (Proc. American Control Conf., vol. 5 (2003), IEEE), 4119-4124
[26] Muscariello, L.; Mellia, M.; Meo, M.; Ajmone Marsan, M.; Lo Cigno, R., Markov models of internet traffic and a new hierarchical MMPP model, Comput. Commun., 28, 16, 1835-1851 (2005)
[28] Ogata, K., Discrete-time Control Systems (1987), Prentice-Hall, Inc.: Prentice-Hall, Inc. Upper Saddle River, NJ, USA
[30] Ojha, U.; Chow, M-Y., Realization and validation of delay tolerant behavior control based adaptive bandwidth allocation for networked control system, (Int. Symp. on Ind. Electron. (ISIE) (2010), IEEE), 2853-2858
[32] Peng, C.; Fei, M-R.; Tian, E.; Guan, Y-P., On hold or drop out-of-order packets in networked control systems, Inf. Sci., 268, 436-446 (2014) · Zbl 1339.93016
[33] Qiu, L.; Liu, C.; Yao, F.; Xu, G., Analysis and design of networked control systems with random markovian delays and uncertain transition probabilities, (Abstract and Applied Analysis, vol. 2014 (2014), Hindawi Publishing Corp.) · Zbl 1406.93263
[34] Sala, A., Computer control under time-varying sampling period: an LMI gridding approach, Automatica, 41, 12, 2077-2082 (2005) · Zbl 1100.93511
[35] Sala, A.; Cuenca, Á.; Salt, J., A retunable PID multi-rate controller for a networked control system, Inf. Sci., 179, 14, 2390-2402 (2009) · Zbl 1165.93314
[36] Salt, J.; Cuenca, A.; Palau, F.; Dormido, S., A multirate control strategy to the slow sensors problem: An interactive simulation tool for controller assisted design, Sensors, 14, 3, 4086-4110 (2014)
[37] Sheng, J.; Chen, T.; Shah, S. L., Generalized predictive control for non-uniformly sampled systems, J. Process Control, 12, 8, 875-885 (2002)
[38] Shi, Y.; Yu, B., Output feedback stabilization of networked control systems with random delays modeled by markov chains, IEEE Trans. Autom. Control, 54, 7, 1668-1674 (2009) · Zbl 1367.93538
[39] Shi, Y.; Yu, B., Robust mixed \(H_2 / H_\infty\) control of networked control systems with random time delays in both forward and backward communication links, Automatica, 47, 4, 754-760 (2011) · Zbl 1215.93045
[40] Shousong, H.; Qixin, Z., Stochastic optimal control and analysis of stability of networked control systems with long delay, Automatica, 39, 11, 1877-1884 (2003) · Zbl 1175.93240
[41] Shukla, D.; Thakur, S., Index based Internet traffic sharing analysis of users by a Markov chain probability model, Karpagam J. Comput. Sci., 4, 3, 1539-1545 (2010)
[42] Sturm, J. F., Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Meth. Softw., 11, 1, 625-653 (1999) · Zbl 0973.90526
[43] Tipsuwan, Y.; Chow, M. Y., Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation - Part I: Networked control, IEEE Trans. Ind. Electron., 51, 6, 1218-1227 (2004)
[44] Vanijjirattikhan, R.; Chow, M-Y.; Szemes, P.; Hashimoto, H., Mobile agent gain scheduler control in inter-continental Intelligent Space, (Proc. Int. Conf. on Robotics and Automation (ICRA) (2005), IEEE), 1115-1120
[45] Voulgaris, P. G.; Bamieh, B., Optimal \(H \infty\) control of hybrid multirate systems, (Proc. IEEE Conf. on Decision and Control (1992), IEEE), 457-462
[46] Wang, D.; Wang, J.; Wang, W., Output feedback control of networked control systems with packet dropouts in both channels, Inf. Sci., 221, 544-554 (2013) · Zbl 1293.93274
[47] Xia, Y.; Xie, W.; Liu, B.; Wang, X., Data-driven predictive control for networked control systems, Inf. Sci., 235, 45-54 (2013) · Zbl 1284.93220
[48] Yang, T. C., Networked control system: a brief survey, IEE Proc. Control Theory Appl., 153, 4, 403-412 (2006)
[49] Yoshizawa, K.; Hashimoto, H.; Wada, M.; Mori, S., Path tracking control of mobile robots using a quadratic curve, (Proc. IEEE Intelligent Vehicles Symposium (1996), IEEE), 58-63
[50] Zhang, H.; Shi, Y.; Wang, J., On energy-to-peak filtering for nonuniformly sampled nonlinear systems: a markovian jump system approach, IEEE Trans. Fuzzy Syst., 22, 1, 212-222 (2014)
[51] Zhang, J.; Lam, J.; Xia, Y., Output feedback delay compensation control for networked control systems with random delays, Inf. Sci., 265, 154-166 (2014) · Zbl 1327.93363
[52] Zhang, L.; Gao, H.; Kaynak, O., Network-induced constraints in networked control systems: a survey, IEEE Trans. Ind. Informat., 9, 1, 403-416 (2013)
[53] Zhao, Y-B.; Liu, G-P.; Rees, D., Actively compensating for data packet disorder in networked control systems, IEEE Trans. Circ. Syst. II: Exp. Briefs, 57, 11, 913-917 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.