×

A modified variable complexity modeling for efficient multidisciplinary aircraft conceptual design. (English) Zbl 1364.93540

Summary: This paper describes a modified variable complexity modeling (MVCM) framework that uses a neural network to replace the Taylor series after several warm-up iterations. The MVCM framework with an additive scaling function is most efficient in terms of high-fidelity function evaluation savings compared with traditional variable complexity modeling (VCM) among multiplicative and hybrid scaling functions. The MVCM framework achieves 59.1 and 68.6 % savings in high-fidelity function evaluations for one-dimensionally and two-dimensionally constrained problems, respectively, compared with the VCM method. The MVCM framework provides a larger trust region than the VCM due to the global behavior of neural networks. The MVCM solution also converges closely to the high-fidelity function. The MVCM framework is integrated with an in-house low-fidelity aircraft design synthesis program and a high-fidelity analysis (AADL3D) for the conceptual design of multidisciplinary regional jet aircraft (RJA) to enhance the optimal RJA configuration compared with low-fidelity analysis results. The optimal RJA wing configuration using the MVCM framework provides more realistic and reasonable configurations compared to the results of low-fidelity analysis with a short turnaround time.

MSC:

93C95 Application models in control theory
76G25 General aerodynamics and subsonic flows

Software:

OPTIMAS
Full Text: DOI

References:

[1] Alexandrov NM, Lewis RM (2002) An overview of first-order model management for engineering optimization. Optim Eng 2:413-430 · Zbl 1079.90622 · doi:10.1023/A:1016042505922
[2] Alexandrov NM, Dennis JE, Lewis RM, Torczon V (1998) A trust-region framework for managing the use of approximation models in optimization. Struct Optim 15(1):16-23 · doi:10.1007/BF01197433
[3] Alexandrov NM, Lewis RM, Gumbert CR, Green LL, Newman PA (2001) Approximation and model management in aerodynamic optimization with variable-fidelity models. J Aircr 38:1093-1101 · doi:10.2514/2.2877
[4] Arora J (2004) Introduction to optimum design, 2nd edn. Academic Press, New York
[5] Boyd JP (2013) A Fourier error analysis for radial basis functions on an infinite uniform grid. Part 2: spectral-plus is special. Appl Math Comput 225:695-707 · Zbl 1334.65036 · doi:10.1016/j.amc.2013.09.073
[6] Broomhead DS, Lowe D (1988a) Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal Signals and Radar Establishment, Malvern
[7] Broomhead DS, Lowe D (1988b) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321-355 · Zbl 0657.68085
[8] Carr JC, Fright RW, Beatson RK (1997) Surface interpolation with radial basis function for medical imaging. IEEE Trans Med Imaging 16(1):96-107 · doi:10.1109/42.552059
[9] Chiba K, Obayashi S, Nakahashi K, Morino H (2005) High-fidelity multidisciplinary design optimization of aerostructural wing shape for regional jet. AIAA Pap 5080:2005 · Zbl 1109.68589
[10] Choi S, Alonso JJ, Kroo IM, Wintzer M (2008) Multifidelity design optimization of low-boom supersonic jets. J Aircr 45(1):106-118 · doi:10.2514/1.28948
[11] Elsayed K, Vucinic D, d’Ippolito R, Lacor C (2012) Comparison between RBF and Kriging surrogates in design optimization of high dimensional problems. In: Proceedings of 3rd international conference on engineering optimization, Rio de Janeiro, Brazil, pp 1-5
[12] Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley, Chichester · doi:10.1002/9780470770801
[13] Gano SE (2005) Simulation-based design using variable fidelity optimization. University of Notre Dame, Indiana
[14] Gano Shawn E, Renaud John E, Sanders Brian (2005) Hybrid variable fidelity optimization by using a kriging-based scaling function. AIAA J 43:2422-2430 · doi:10.2514/1.12466
[15] Gano SE, Renaud JE, Martin JD, Simpson TW (2006a) Update strategies for kriging models used in variable fidelity optimization. Struct Multidiscip Optim 32(4):287-298 · doi:10.1007/s00158-006-0025-y
[16] Gano SE, Renaud JE, Agarwal H, Tovar A (2006b) Reliability-based design using variable-fidelity optimization. Struct Infrastruct Eng 2(3):247 · doi:10.1080/15732470600590408
[17] Giunta AA et al. (1995) Variable-complexity multidisciplinary design optimization using parallel computers. Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute & State University, Blacksburg, pp 489-494
[18] Gonzalez, L.; Whitney, E.; Srinivas, K.; Periaux, J.; Deconinck, H. (ed.); Dick, E. (ed.), Optimum multidisciplinary and multi-objective wing design in CFD using evolutionary techniques, 681-686 (2006), Berlin
[19] Gumbert CR, Hou GJ-W, Newman PA (2005) High-fidelity computational optimization for 3-D flexible wings. Optim Eng 6(1):117-138 · Zbl 1159.74401 · doi:10.1023/B:OPTE.0000048539.37526.e3
[20] Haftka RT (1991) Combining global and local approximations. AIAA J 29(9):1525 · doi:10.2514/3.10768
[21] Hajela P (1986) Geometric programming strategies in large-scale structural synthesis. AIAA J 24(7):1173-1178 · Zbl 0647.73043 · doi:10.2514/3.9410
[22] Heuer N, Tran T (2013) A mixed method for Dirichlet problems with radial basis functions. Comput Math Appl 66(10):2045-2055 · Zbl 1350.65124 · doi:10.1016/j.camwa.2013.08.029
[23] Huang X, Dudley J, Haftka RT, Grossman B, Mason WH (1996) Structural weight estimation for multidisciplinary optimization of a high-speed civil transport. J Aircr 33(3):608-616 · doi:10.2514/3.46989
[24] Hutchison MG, Unger ER, Mason WH, Grossman B, Haftkat RT (1994) Variable-complexity aerodynamic optimization of a high-speed civil transport wing. J Aircr 31(1):110-116 · doi:10.2514/3.46462
[25] Jackson P (2012) Jane’s all the world’s aircraft 2010-2011, IHS Jane’s all the world’s aircraft. Model center user guide and programmers reference, version 10.1. Phoenix Integration, Inc., Blacksburg
[26] Kraft D (1988) A software package for sequential quadratic programming. DLR German Aerospace Center—Institute for Flight Mechanics, Koln · Zbl 0646.90065
[27] Lewis R, Nash S (2000) A multigrid approach to the optimization of sustems governed by differential equations. AIAA 4890:2000
[28] MacMillin PE, Dudley J, Mason WH, Grossman B, Haftka RT (1994) Trim, control and landing gear effects in variable-complexity HSCT design, AIAA Paper 94-4381, 5th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Panama city beach, Fl., 7-9 September 1994
[29] Marduel X, Tribes C, Trépanier J-Y (2006) Variable-fidelity optimization: efficiency and robustness. Optim Eng 7(4):479-500 · Zbl 1179.76074 · doi:10.1007/s11081-006-0351-3
[30] Mejia-Rodriguez G, Renaud JE, Tomar V (2008) A variable fidelity model management framework for designing multiphase materials. J Mech Des 130(9):091702-091713 · doi:10.1115/1.2965361
[31] Min B-Y, Lee J-W, Byun Y-H (2006) Numerical investigation of the shock interaction effect on the lateral jet controlled missile. Aerosp Sci Technol 10(5):385-393 · Zbl 1195.76218 · doi:10.1016/j.ast.2005.11.013
[32] Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York
[33] Nguyen Nhu-Van (2011) An efficient multi-fidelity approach for the multi-disciplinary aerospace system design and optimization. Doctor of Philosophy, Konkuk University, Seoul
[34] Nguyen N-V, Jeon K-S, Lee J-W, Byun Y-H (2010) “Development of repetitively enhanced neural networks (RENN) for efficient missile design and optimization. In: Proceedings of Computational Science and Optimization (CSO), 2010 third international joint conference on, vol 1, pp 431-435
[35] Nguyen Nhu-Van, Choi Seok-Min, Kim Wan-Sub, Kim Sangho, Lee Jae-Woo, Byun Yung-Hwan (2013) Multidisciplinary unmanned combat air vehicle (UCAV) system design implementing multi-fidelity models. JAerosp Sci Technol 26(1):200-210 · doi:10.1016/j.ast.2012.04.004
[36] Peigin S, Epstein B (2008) Multiconstrained aerodynamic design of business jet by CFD driven optimization tool. Aerosp Sci Technol 12(2):125-134 · Zbl 1273.76363 · doi:10.1016/j.ast.2007.03.001
[37] Peri D, Pinto A, Campana EF (2006) Multi-objective optimisation of expensive objective functions with variable fidelity models. Large-Scale Nonlinear Optim 83:223-241 · Zbl 1108.90333 · doi:10.1007/0-387-30065-1_14
[38] Praveen C, Duvigneau R (2007) Radial basis function and kriging metamodels for aerodynamic optimization, Technical report No. 123456789, INRIA, Sophia Antipolis, France · Zbl 0657.68085
[39] Robinson TD, Eldred MS, Willcox KE, Haimes R (2008) Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping. AIAA J 46:2814-2822 · doi:10.2514/1.36043
[40] Rodríguez JF, Renaud JE, Watson LT (1997) Trust region augmented Lagrangian methods for sequential response. J Mech Des 15:58-66
[41] Rodríguez JF, Renaud JE, Wujek BA, Tappeta RV (2000) Trust region model management in multidisciplinary design optimization. J Comput Appl Math 124(1-2):139-154 · Zbl 0992.90042 · doi:10.1016/S0377-0427(00)00424-6
[42] Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3:175-184. doi:10.1093/comjnl/3.3.175 · doi:10.1093/comjnl/3.3.175
[43] Schmitt V, Charpin F (1979) Pressure distributions on the ONERA-M6-wing at transonic mach numbers. Experimental data base for computer program assessment. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138 · Zbl 0992.90042
[44] Takemiya T (2008) Aerodynamic design applying automatic differentiation and using robust variable fidelity optimization. Georgia Institute of Technology, Atlanta
[45] Thokala P, Martins JRRA (2007) Variable-complexity optimization applied to airfoil design. Eng Optim 39(3):271 · doi:10.1080/03052150601107976
[46] Woojoo Choi (2011) “Study on Preprocessing for Fluid-Structure Interaction Analysis of AADL3D Code”, Master Thesis, Konkuk
[47] Xia L, Zheng-hong G (2006) Application of variable-fidelity models to aerodynamic optimization. Appl Math Mech 27(8):1089-1095 · Zbl 1163.76324 · doi:10.1007/s10483-006-0809-z
[48] Xing J-J, Lue R-M, Guo H-L, Li Y-Q, Fu H-Y, Yang T-M, Zhou Y-P (2014) Radial basis function network-based transformation for nonlinear partial least-squares as optimized by particle swarm optimization: application to QSAR studies. Chemom Intell Lab Syst 130:37-44 · doi:10.1016/j.chemolab.2013.10.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.