×

On handle theory for Morse-Bott critical manifolds. (English) Zbl 1431.37010

This paper studies flows induced by Morse-Bott functions on \(n\)-dimensional manifolds. The main results of the paper present some conditions for an abstract Morse-Bott graph to be realized as the Morse-Bott graph associated to a flow induced by a Morse-Bott function. A necessary condition for this realization is that the Morse-Bott graph must satisfy the generalized Morse-Bott inequalities for isolating blocks (Corollary 5.1). In addition, this condition turns out to be sufficient in the 2-dimensional and 3-dimensional cases to realize an abstract Morse-Bott semigraph with only one vertex as the Morse-Bott semigraph of a Morse-Bott flow on an isolating block (Theorem 6.1 and Theorem 6.3) and to realize an abstract Morse-Bott graph by a Morse-Bott flow on a closed 3-dimensional manifold (Corollary 6.1). Theorem 6.2 establishes some necessary and sufficient conditions for an abstract Morse-Bott graph to be associated to a Morse-Bott flow defined on a closed 2-dimensional manifold. Notice that the 2-manifold is completely determined by the data on the Morse-Bott graph. The authors point out that in contrast with the 2-dimensional case, a realizable 3-abstract Morse-Bott graph may be associated to flows in infinitely many 3-manifolds. The last section of the paper deals with the \(n\)-dimensional case with \(n>3\).

MSC:

37B30 Index theory for dynamical systems, Morse-Conley indices
37B35 Gradient-like behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems
57R65 Surgery and handlebodies
57R70 Critical points and critical submanifolds in differential topology
Full Text: DOI

References:

[1] Banyaga, A., Hurtubise, D.: Lectures on Morse Homology. Kluwer Texts in the Mathematical Sciences, vol. 29. Kluwer Academic Publishers Groups, Dordrecht (2004) · Zbl 1080.57001 · doi:10.1007/978-1-4020-2696-6
[2] Banyaga, A., Hurtubise, D.: The Morse-Bott inequalities via a dynamical systems approach. Ergod. Theory Dyn. Syst. 29(6), 1693-1703 (2009) · Zbl 1186.37038 · doi:10.1017/S0143385708000928
[3] Bertolim, M.A., Mello, M.P., de Rezende, K.A.: Lyapunov graph continuation. Ergod. Theory Dyn. Syst. 23, 1-58 (2003) · Zbl 1140.37310 · doi:10.1017/S014338570200086X
[4] Bertolim, M.A., Mello, M.P., de Rezende, K.A.: Poincaré-Hopf and Morse inequalities for Lyapunov graphs. Ergod. Theory Dyn. Syst. 25, 1-39 (2005) · Zbl 1084.37013 · doi:10.1017/S0143385704000483
[5] Bertolim, M.A., Mello, M.P., de Rezende, K.A.: Poincaré-Hopf inequalities. Trans. Am. Math. Soc. 357, 4091-4129 (2004) · Zbl 1134.37316 · doi:10.1090/S0002-9947-04-03641-4
[6] Bertolim, M.A., de Rezende, K.A., Manzoli Neto, O.: Isolating blocks for periodic orbits. J. Dyn. Control Syst. 13(1), 121-134 (2007) · Zbl 1116.37010 · doi:10.1007/s10883-006-9006-0
[7] Bertolim, M.A., de Rezende, K.A., Manzoli Neto, O., Vago, G.M.: Isolating blocks for Morse flows. Geom. Dedicata 121, 19-41 (2006) · Zbl 1105.37009 · doi:10.1007/s10711-006-9083-y
[8] Bredon, G.: Topology and Geometry, Graduate Texts in Mathematics 139. Springer, Berlin (1991)
[9] Conley, C.: Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series in Mathematics, vol. 38. AMS, Providence (1978) · Zbl 0397.34056 · doi:10.1090/cbms/038
[10] Conley, C., Zehnder, E.: Morse type index theory for flows and periodic solutions for Hamiltonian equations. Commun. Pure Appl. Math. 37, 207-253 (1984) · Zbl 0559.58019 · doi:10.1002/cpa.3160370204
[11] Cornea, O.: The genus and the fundamental group of high-dimensional manifolds. Stud. Cerc. Mat. 41(3), 169-178 (1989) · Zbl 0694.57015
[12] Cruz, R. N., de Rezende, K. A.: Cycle rank of Lyapunov graphs and the genera of manifolds. In: Proceedings of the American Mathematical Society, vol. 126(12) (1998) · Zbl 0926.57032
[13] Cruz, R.N., de Rezende, K.A.: Gradient-like flows on high-dimensional manifolds. Ergod. Theory Dyn. Syst. 19(2), 339-362 (1999) · Zbl 0942.37012 · doi:10.1017/S0143385799120893
[14] de Rezende, K.A.: Gradient-like flows on 3-manifolds. Ergod. Theory Dyn. Syst. 13, 557-580 (1993) · Zbl 0822.57013 · doi:10.1017/S0143385700007525
[15] de Rezende, K.A.: Smale flows on the three-sphere. Trans. Am. Math. Soc. 303, 283-310 (1987) · Zbl 0625.58019 · doi:10.1090/S0002-9947-1987-0896023-7
[16] Farber, M.: Topology of Closed One-Forms. Mathematical Surveys and Monographs, vol. 108. American Mathematical Society, Providence (2004) · Zbl 1052.58016 · doi:10.1090/surv/108
[17] Frauenfelder, U.: Finite Dimensional Approximations for the Symplectic Vortex Equations. arXiv:math/0408102v1 (2008)
[18] Franks, J.: Homology and Dynamical Systems. CBMS Regional Conference Series in Mathematics, vol. 49. AMS, Providence (1982) · Zbl 0497.58018
[19] Franks, J.: Non-singular smale flows on \[S^3\] S3. Topology 24, 265-282 (1985) · Zbl 0609.58039 · doi:10.1016/0040-9383(85)90002-3
[20] Franzosa, R., de Rezende, K.A.: Lyapunov graphs and flows on surfaces. Trans. Am. Math. Soc. 340, 767-784 (1993) · Zbl 0806.58042 · doi:10.1090/S0002-9947-1993-1127155-9
[21] Lima, D.V.S., de Rezende, K.A.: Connection matrices for Morse-Bott flows. Topol. Methods Nonlinear Anal. 44, 471-495 (2014) · Zbl 1362.37040 · doi:10.12775/TMNA.2014.057
[22] Reineck, J.F.: Continuation to the minimal number of critical points in gradient flows. Duke Math. J. 68, 185-194 (1992) · Zbl 0766.58048 · doi:10.1215/S0012-7094-92-06807-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.