×

Localisation of soft charges, and thermodynamics of softly hairy black holes. (English) Zbl 1409.83103

Summary: Large gauge transformations (LGT) in asymptotically flat space are generated by charges defined at asymptotic infinity. No method for unambiguously localising these charges into the interior of spacetime has previously been established. We determine what this method must be, and use it to find localised expressions for the LGT charges. Applying the same principle to the case of a charged black hole spacetime leads to angle-dependent generalisations of the Smarr formula and the first law of black hole mechanics, both of which have important thermodynamical implications. In particular, the presence of a heat current intrinsic to the event horizon is observed.

MSC:

83C57 Black holes
80A10 Classical and relativistic thermodynamics

References:

[1] Regge, T.; Teitelboim, C., Role of surface integrals in the hamiltonian formulation of general relativity, Ann. Phys., 88, 286-318, (1974) · Zbl 0328.70016 · doi:10.1016/0003-4916(74)90404-7
[2] Crnkovic, C., Symplectic geometry of the convariant phase space, Class. Quantum Grav., 5, 1557, (1988) · Zbl 0665.53052 · doi:10.1088/0264-9381/5/12/008
[3] Crnkovic, C.; Witten, E.; Hawking, S. W.; Israel, W., Covariant description of canonical formalism in geometrical theories, Three Hundred Years of Gravitation, 676-684, (1987), Cambridge: Cambridge University Press, Cambridge · Zbl 0966.81533
[4] Lee, J.; Wald, R. M., Local symmetries and constraints, J. Math. Phys., 31, 725-743, (1990) · Zbl 0704.70013 · doi:10.1063/1.528801
[5] Wald, R. M., The first law of black hole mechanics, 358-366, (1993) · Zbl 0850.83041
[6] Wald, R. M., Black hole entropy is the Noether charge, Phys. Rev. D, 48, R3427-R3431, (1993) · Zbl 0942.83512 · doi:10.1103/PhysRevD.48.R3427
[7] Iyer, V.; Wald, R. M., Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D, 50, 846-864, (1994) · doi:10.1103/PhysRevD.50.846
[8] Wald, R. M.; Zoupas, A., A general definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D, 61, (2000) · Zbl 1136.83317 · doi:10.1103/PhysRevD.61.084027
[9] Barnich, G.; Brandt, F., Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B, 633, 3-82, (2002) · Zbl 0995.81054 · doi:10.1016/S0550-3213(02)00251-1
[10] Arnowitt, R. L.; Deser, S.; Misner, C. W., The dynamics of general relativity, Gen. Relativ. Gravit., 40, 1997-2027, (2008) · Zbl 1152.83320 · doi:10.1007/s10714-008-0661-1
[11] Strominger, A., On BMS invariance of gravitational scattering, J. High Energy Phys., JHEP07(2014), 152, (2014) · Zbl 1392.81215 · doi:10.1007/JHEP07(2014)152
[12] He, T.; Lysov, V.; Mitra, P.; Strominger, A., BMS supertranslations and Weinberg’s soft graviton theorem, J. High Energy Phys., JHEP05(2015), 151, (2015) · Zbl 1388.83261 · doi:10.1007/JHEP05(2015)151
[13] Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A., Semiclassical Virasoro symmetry of the quantum gravity S-matrix, J. High Energy Phys., JHEP08(2014), 058, (2014) · doi:10.1007/JHEP08(2014)058
[14] He, T.; Mitra, P.; Porfyriadis, A. P.; Strominger, A., New symmetries of massless QED, J. High Energy Phys., JHEP10(2014), 112, (2014) · doi:10.1007/JHEP10(2014)112
[15] Strominger, A.; Zhiboedov, A., Gravitational memory, BMS supertranslations and soft theorems, J. High Energy Phys., JHEP01(2016), 086, (2016) · Zbl 1388.83072 · doi:10.1007/JHEP01(2016)086
[16] He, T.; Mitra, P.; Strominger, A., 2D Kac-Moody symmetry of 4D Yang-Mills theory, J. High Energy Phys., JHEP10(2016), 137, (2016) · Zbl 1390.81630 · doi:10.1007/JHEP10(2016)137
[17] Kapec, D.; Perry, M.; Raclariu, A-M; Strominger, A., Infrared divergences in QED, revisited, Phys. Rev. D, 96, (2017) · doi:10.1103/PhysRevD.96.085002
[18] Henneaux, M.; Troessaert, C., BMS group at spatial infinity: the Hamiltonian (ADM) approach, J. High Energy Phys., JHEP03(2018), 147, (2018) · Zbl 1388.83015 · doi:10.1007/JHEP03(2018)147
[19] Henneaux, M.; Troessaert, C., Hamiltonian structure and asymptotic symmetries of the Einstein-Maxwell system at spatial infinity, (2018) · Zbl 1395.83017
[20] Hawking, S. W.; Perry, M. J.; Strominger, A., Soft hair on black holes, Phys. Rev. Lett., 116, (2016) · doi:10.1103/PhysRevLett.116.231301
[21] Hawking, S. W.; Perry, M. J.; Strominger, A., Superrotation charge and supertranslation hair on black holes, J. High Energy Phys., JHEP05(2017), 161, (2017) · Zbl 1380.83143 · doi:10.1007/JHEP05(2017)161
[22] Strominger, A., Lectures On The Infrared Structure Of Gravity And Gauge Theory, (2018), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1408.83003
[23] Compère, G.; Fiorucci, A., Advanced lectures in general relativity, (2018)
[24] Donnay, L.; Giribet, G.; Gonzalez, H. A.; Pino, M., Supertranslations and superrotations at the black hole horizon, Phys. Rev. Lett., 116, (2016) · doi:10.1103/PhysRevLett.116.091101
[25] Donnay, L.; Giribet, G.; Gonzlez, H. A.; Pino, M., Extended symmetries at the black hole horizon, J. High Energy Phys., JHEP09(2016), 100, (2016) · Zbl 1390.83191 · doi:10.1007/JHEP09(2016)100
[26] Bardeen, J. M.; Carter, B.; Hawking, S. W., The four laws of black hole mechanics, Commun. Math. Phys., 31, 161-170, (1973) · Zbl 1125.83309 · doi:10.1007/BF01645742
[27] Page, D. N., Hawking radiation and black hole thermodynamics, New J. Phys., 7, 203, (2005) · doi:10.1088/1367-2630/7/1/203
[28] Carlip, S., Black hole thermodynamics, Int. J. Mod. Phys. D, 23, 1430023, (2014) · Zbl 1303.83023 · doi:10.1142/S0218271814300237
[29] Ashtekar, A.; Beetle, C.; Fairhurst, S., Isolated horizons: a generalization of black hole mechanics, Class. Quantum Grav., 16, L1-L7, (1999) · Zbl 1080.83550 · doi:10.1088/0264-9381/16/1/001
[30] Ashtekar, A.; Beetle, C.; Fairhurst, S., Mechanics of isolated horizons, Class. Quantum Grav., 17, 253-298, (2000) · Zbl 0948.83001 · doi:10.1088/0264-9381/17/2/301
[31] Ashtekar, A.; Fairhurst, S.; Krishnan, B., Isolated horizons: Hamiltonian evolution and the first law, Phys. Rev. D, 62, (2000) · doi:10.1103/PhysRevD.62.104025
[32] Ashtekar, A.; Beetle, C.; Lewandowski, J., Mechanics of rotating isolated horizons, Phys. Rev. D, 64, (2001) · doi:10.1103/PhysRevD.64.044016
[33] Ashtekar, A.; Krishnan, B., Isolated and dynamical horizons and their applications, Living Rev. Relativ., 7, 10, (2004) · Zbl 1071.83036 · doi:10.12942/lrr-2004-10
[34] Haco, S. J.; Hawking, S. W.; Perry, M. J.; Bourjaily, J. L., The conformal BMS group, J. High Energy Phys., JHEP11(2017), 012, (2017) · Zbl 1383.81222 · doi:10.1007/JHEP11(2017)012
[35] Mädler, T.; Winicour, J., Bondi-Sachs formalism, Scholarpedia, 11, 33528, (2016) · doi:10.4249/scholarpedia.33528
[36] Bondi, H.; van der Burg, M. G J.; Metzner, A. W K., Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. R. Soc. A, 269, 21-52, (1962) · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[37] Sachs, R. K., Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. R. Soc. A, 270, 103-126, (1962) · Zbl 0101.43605 · doi:10.1098/rspa.1962.0206
[38] Barnich, G.; Troessaert, C., Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett., 105, (2010) · doi:10.1103/PhysRevLett.105.111103
[39] Barnich, G.; Troessaert, C.; Barnich, G.; Troessaert, C., Supertranslations call for superrotations. Supertranslations call for superrotations, PoS. Ann. Univ. Craiova Phys., 21, S11, (2011) · doi:10.22323/1.127.0010
[40] Barnich, G.; Troessaert, C., BMS charge algebra, J. High Energy Phys., JHEP12(2011), 105, (2011) · Zbl 1306.83002 · doi:10.1007/JHEP12(2011)105
[41] Barnich, G.; Brandt, F.; Henneaux, M., Local BRST cohomology in gauge theories, Phys. Rep., 338, 439-569, (2000) · Zbl 1097.81571 · doi:10.1016/S0370-1573(00)00049-1
[42] Hawking, S. W., Black hole explosions, Nature, 248, 30-31, (1974) · Zbl 1370.83053 · doi:10.1038/248030a0
[43] Hawking, S. W., Breakdown of predictability in gravitational collapse, Phys. Rev. D, 14, 2460-2473, (1976) · doi:10.1103/PhysRevD.14.2460
[44] Mazur, P. O.; MacCallum, M. A H., Black hole uniqueness theorems, 130-157, (1987), Cambridge: Cambridge University Press, Cambridge
[45] Mirbabayi, M.; Porrati, M., Dressed hard states and black hole soft hair, Phys. Rev. Lett., 117, (2016) · doi:10.1103/PhysRevLett.117.211301
[46] Bousso, R.; Porrati, M., Soft hair as a soft wig, Class. Quantum Grav., 34, (2017) · Zbl 1380.83126 · doi:10.1088/1361-6382/aa8be2
[47] Strominger, A., Black hole information revisited, (2017)
[48] Hawking, S. W.; Ellis, G. F R., The Large Scale Structure of Space-Time, (2011), Cambridge: Cambridge University Press, Cambridge
[49] Smarr, L., Mass formula for kerr black holes, Phys. Rev. Lett., 30, 71-73, (1973) · doi:10.1103/PhysRevLett.30.71
[50] Freedman, M.; Headrick, M., Bit threads and holographic entanglement, Commun. Math. Phys., 352, 407-438, (2017) · Zbl 1425.81014 · doi:10.1007/s00220-016-2796-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.