×

An efficient spectral collocation algorithm for nonlinear Phi-four equations. (English) Zbl 1295.65100

Summary: A Jacobi-Gauss-Lobatto collocation method is developed to obtain spectral solutions for different versions of nonlinear time-dependent Phi-four equations subject to nonhomogeneous initial-boundary conditions. The node points are introduced as the roots of the orthogonal Jacobi polynomial with general parameters, \(\alpha\) and \(\beta\). The objective of this paper is thus to investigate the influence of the Jacobi spectral collocation method for solving the nonlinear Phi-four equations. Moreover, the results obtained with the different Jacobi polynomial parameters, \(\alpha\) and \(\beta\) are compared to examine the accuracy of most of these parameters. The accuracy and performance of the proposed method are assessed and evaluated through solving three nonlinear problems. Some numerical experiments are presented to show the convergence and the accuracy of the proposed algorithm.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35G31 Initial-boundary value problems for nonlinear higher-order PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

References:

[1] doi:10.1016/j.camwa.2011.12.050 · Zbl 1252.65194 · doi:10.1016/j.camwa.2011.12.050
[2] doi:10.1016/j.matcom.2012.03.007 · Zbl 1264.60044 · doi:10.1016/j.matcom.2012.03.007
[3] doi:10.1016/j.camwa.2011.04.014 · Zbl 1228.65203 · doi:10.1016/j.camwa.2011.04.014
[4] doi:10.1016/j.aml.2012.01.027 · Zbl 1255.65147 · doi:10.1016/j.aml.2012.01.027
[5] doi:10.1016/j.apnum.2008.08.007 · Zbl 1162.65374 · doi:10.1016/j.apnum.2008.08.007
[6] doi:10.1016/j.apm.2011.12.031 · Zbl 1252.34019 · doi:10.1016/j.apm.2011.12.031
[7] doi:10.1016/j.cnsns.2011.06.018 · Zbl 1244.65114 · doi:10.1016/j.cnsns.2011.06.018
[8] doi:10.1016/j.cnsns.2011.04.025 · Zbl 1244.65099 · doi:10.1016/j.cnsns.2011.04.025
[9] doi:10.1016/j.cnsns.2012.02.027 · Zbl 1251.65112 · doi:10.1016/j.cnsns.2012.02.027
[10] doi:10.1016/j.physleta.2003.07.026 · Zbl 1098.81770 · doi:10.1016/j.physleta.2003.07.026
[11] doi:10.1016/j.chaos.2003.10.028 · Zbl 1046.35105 · doi:10.1016/j.chaos.2003.10.028
[12] doi:10.1016/j.chaos.2004.11.028 · Zbl 1068.35120 · doi:10.1016/j.chaos.2004.11.028
[13] doi:10.1016/j.mcm.2011.12.046 · Zbl 1255.65179 · doi:10.1016/j.mcm.2011.12.046
[14] doi:10.1016/j.amc.2012.12.035 · Zbl 1335.65070 · doi:10.1016/j.amc.2012.12.035
[15] doi:10.1016/j.nonrwa.2010.02.019 · Zbl 1201.35073 · doi:10.1016/j.nonrwa.2010.02.019
[16] doi:10.1007/s11075-009-9296-x · Zbl 1180.65114 · doi:10.1007/s11075-009-9296-x
[17] doi:10.1016/j.cnsns.2008.12.020 · Zbl 1221.35316 · doi:10.1016/j.cnsns.2008.12.020
[18] doi:10.1016/j.physleta.2007.04.040 · Zbl 1209.35120 · doi:10.1016/j.physleta.2007.04.040
[19] doi:10.1016/j.amc.2009.07.001 · Zbl 1203.35204 · doi:10.1016/j.amc.2009.07.001
[20] doi:10.1016/j.mcm.2008.03.011 · Zbl 1165.35415 · doi:10.1016/j.mcm.2008.03.011
[21] doi:10.1016/j.cnsns.2012.11.019 · Zbl 1277.35102 · doi:10.1016/j.cnsns.2012.11.019
[22] doi:10.1016/j.amc.2010.02.053 · Zbl 1277.76024 · doi:10.1016/j.amc.2010.02.053
[23] doi:10.1002/num.20369 · Zbl 1170.65099 · doi:10.1002/num.20369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.