×

Third symmetric power L-functions for GL(2). (English) Zbl 0684.10026

The author considers the analytic properties of the L-function \(L(s,\pi,r^ 0_ 3)\) where \(\pi\) is a cuspidal automorphic representation of \(GL_ 2(F_{{\mathbb{A}}})\) (F a number field) and \(r^ 0_ 3=r_ 3\otimes (\Lambda^ 2r_ 3)^{-1}\) where generally \(r_ j\) is the j-th symmetric power of the standard representation of \(GL_ 2({\mathbb{C}})\). This arises in the global theory of automorphic forms in two different contexts.
First of all it is L(s,\(\pi\) \(\times \Pi)/L(s,\pi)\) where L(s,\(\pi\) \(\times \Pi)\) is the Rankin-Selberg convolution on \(GL_ 3(F_{{\mathbb{A}}})\) of Jacquet-Shalika and L(s,\(\pi)\) is the Hecke L- function. Moreover \(\Pi\) is the Gelbart-Jacquet adjoint square lift of \(\pi\) to \(GL_ 3(F_{{\mathbb{A}}})\). On the other hand the gamma-function corresponding to \(L(s,\pi,r^ 0_ 3)\) appears in the local coefficients of Whittaker functions for representations of a split group of type \(G_ 2\) and hence appears in the author’s theory of such functions. Combining these he is able to prove a functional equation for \(L(s,\pi,r^ 0_ 3)\) and \(L(s,\pi,r_ 3)\) and he gives a very straightforward criterion for checking that these functions are entire. He shows that this criterion applies to a large class of cuspidal holomorphic modular cusp forms of weight 2.
The argument also leads to an explicit computation of the Plancherel constant for representations of a split group of type \(G_ 2\) induced from \(GL_ 2\) over a local field of characteristic 0. He also determines the nature of the Jordan-Hölder series for such representations.
The paper concludes with a nonvanishing result for a partial L-function \(L_ S(s,\pi,r_ 5)\) and some applications. This uses a similar method but with a group of type \(F_ 4\) in place of \(G_ 2\).
Reviewer: S.J.Patterson

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11R39 Langlands-Weil conjectures, nonabelian class field theory
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
11F70 Representation-theoretic methods; automorphic representations over local and global fields

References:

[1] A.O.L. Atkin and J. Lehner : Hecke operators on \Gamma 0(m) , Math Ann. 185 (1970) 134-160. · Zbl 0177.34901 · doi:10.1007/BF01359701
[2] Y. Flicker : Symmetric squares: applications of a trace formula . Preprint. · Zbl 0761.11027 · doi:10.2307/2154157
[3] S. Gelbart and H. Jacquet : A relation between automorphic representations of GL(2) and GL(3) , Ann. Scient. Éc. Norm. Sup. 11 (1978) 471-542. · Zbl 0406.10022 · doi:10.24033/asens.1355
[4] R. Godement and H. Jacquet : Zeta functions of simple algebras , Lecture Notes in Math., Vol. 260, Springer, Berlin-Heidelberg- New York (1972). · Zbl 0244.12011 · doi:10.1007/BFb0070263
[5] H. Jacquet and R.P. Langlands : Automorphic forms on GL(2) , Lecture Notes in Math., Vol. 114, Springer, Berlin-Heidelberg-New York (1970). · Zbl 0236.12010 · doi:10.1007/BFb0058988
[6] H. Jacquet , I.I. Piatetski-Shapiro and J.A. Shalika : Automorphic forms on GL(3) , Annals of Math., 109 (1979) 169-212. · Zbl 0401.10037 · doi:10.2307/1971270
[7] H. Jacquet , I.I. Piatetski-Shapiro and J.A. Shalika : Rankin-Selberg Convolutions , Amer. J. Math. 105 (1983) 367-464. · Zbl 0525.22018 · doi:10.2307/2374264
[8] H. Jacquet , I.I. Piatetski-Shapiro and J.A. Shalika : Facteurs L et \epsilon du groupe linéaire: théorie archimédienne , Comptes Rendus (Série I) 293 (1981) 13-18. · Zbl 0478.22006
[9] H. Jacquet and J.A. Shalika : On Euler products and the classification of automorphic representations I , Amer. J. Math. 103 (1981) 499-558. · Zbl 0473.12008 · doi:10.2307/2374103
[10] H. Jacquet and J.A. Shalika : On Euler products and the classification of automorphic representations II , Amer. J. Math. 103 (1981) 777-815. · Zbl 0491.10020 · doi:10.2307/2374050
[11] D. Keys : On the decomposition of reducible principal series representations of p-adic Chevalley groups , Pacific J. Math. 101 (1982) 351-388. · Zbl 0438.22010 · doi:10.2140/pjm.1982.101.351
[12] J.P. Labesse and R.P. Langlands : L-indistinguishability for SL(2) , Canad. J. Math., 31 (1979) 726-785. · Zbl 0421.12014 · doi:10.4153/CJM-1979-070-3
[13] R.P. Langlands : On the functional equations satisfied by Eisentein series , Lecture Notes in Math., Vol 544, Springer, Berlin -Heidelberg-New York (1976). · Zbl 0332.10018 · doi:10.1007/BFb0079929
[14] R.P. Langlands : Problems in the theory of automorphic forms , in Lecture Notes in Math., Vol. 170, Springer, Berlin -Heidelberg-New York (1970) pp. 18-86. · Zbl 0225.14022 · doi:10.1007/BFb0079065
[15] R.P. Langlands : Base change for GL(2) , Ann. Math. Studies 96, Princeton (1980). · Zbl 0444.22007
[16] R.P. Langlands : On the classification of irreducible representations of real algebraic groups . mimeographed notes, Institute for Advanced Study. · Zbl 0741.22009
[17] B. Mazur and P. Swinnerton-Dyer : Arithmetic of Weil Curves , Invent. Math. 25 (1974) 1-61. · Zbl 0281.14016 · doi:10.1007/BF01389997
[18] C.J. Moreno and F. Shahidi : The L-function L3(s, \pi \Delta ) is entire , Invent. Math. 79 (1985) 247-251. · Zbl 0558.10025 · doi:10.1007/BF01388972
[19] J.P. Serre : Abelian l-adic representations and elliptic curves , Benjamin, New York-Amsterdam (1968). · Zbl 0186.25701
[20] J.P. Serre : Lecture at the Institute for Advanced Study , Princeton, New Jersey, Fall 1983.
[21] F. Shahidi : On the Ramanujan conjecture and finiteness of poles for certain L-functions , Annals of Math, 127 (1988) 547-584. · Zbl 0654.10029 · doi:10.2307/2007005
[22] F. Shahidi : On certain L-functions , Amer. J. Math. 103 (1981) 297-356. · Zbl 0467.12013 · doi:10.2307/2374219
[23] F. Shahidi : Functional equation satisfied by certain L-functions , Comp. Math. 37 (1978) 171-208. · Zbl 0393.12017
[24] F. Shahidi : Fourier transforms of intertwining operators and Plancherel measures for GL(n) , Amer. J. Math. 106 (1984) 67-111. · Zbl 0567.22008 · doi:10.2307/2374430
[25] F. Shahidi : Local coefficients as Artin factors for real groups , Duke Math. J. 52 (1985) 973-1007. · Zbl 0674.10027 · doi:10.1215/S0012-7094-85-05252-4
[26] G. Shimura : On the holomorphy of certain Dirichlet series , Proc. London Math. Soc. 31 (1975) 79-98. · Zbl 0311.10029 · doi:10.1112/plms/s3-31.1.79
[27] G. Shimura : On the factors of the jacobian variety of a modular function field , J. Math. Soc. Japan 25 (1973) 523-544. · Zbl 0266.14017 · doi:10.2969/jmsj/02530523
[28] G. Shimura : Introduction to the arithmetic theory of automorphic functions , in Publ. Math. Soc. Japan, Iwanami-Shoten-Princeton University Press (1971). · Zbl 0221.10029
[29] A. Silberger : Introduction to harmonic analysis on reductive p-adic groups , Math. Notes of Princeton University Press 23, Princeton (1979). · Zbl 0458.22006 · doi:10.1515/9781400871131
[30] A. Silberger : The Knapp-Stein dimension theorem for p-adic groups , Proc. Amer. Math. Soc. 68 (1978) 243-246. · Zbl 0348.22007 · doi:10.2307/2041781
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.