×

The notion of norm and the representation theory of orthogonal groups. (English) Zbl 0852.22016

Nondiscrete tempered spectra of classical groups over local fields are studied by using the theory of endoscopy that relates them to self-dual representations of \(GL(n)\). Let \(\tau\) and \(\tau'\) be two discrete series representations of \(SO_{2m} (F)\) and \(GL_n (F)\) over a local field \(F\), respectively, and \(\tau \otimes \tau'\) the representation of the Levi factor \(SO_{2m} (F) \times GL_n (F)\) of \(SO_{2r} (F)\) with \(r = m + n\). \(I (\tau \otimes \tau')\) is then the representation of \(SO_{2r} (F)\) unitarily induced from \(\tau \otimes \tau'\). The determination of the reducibility of \(I(\tau \otimes \tau')\) is used to study the residue of the standard intertwining operator. The latter, in turn, requires the introduction of norm correspondence from a certain subset of \(\theta\)-conjugacy classes in \(GL_n (F)\) into the set of conjugacy classes in \(SO_{2m} (F)\) where \(\theta (g) = w_n^{-1} \cdot^t g^{-1} \cdot w_n\) is the automorphism of \(GL_n(F)\) defined by means of the \(n \times n\) matrix \(w_n\) whose unique nonzero elements lie on its second diagonal.
Reviewer: E.Kryachko (Kiev)

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
20G25 Linear algebraic groups over local fields and their integers

References:

[1] J. Arthur: Unipotent automorphic representations: Global motivations. In: L. Clozel, J. S. Milne (eds.) Automorphic Forms, Shimura Varieties, and L-functions, vol. 1. (Perspect. Math.10, 1-75, Boston: 1990 Academic Press)
[2] J. Arthur, L. Clozel: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. (Ann. Math. Stud. vol. 120) Princeton, N.J.: Princeton University Press 1989
[3] A. Borel: Automorphic L-functions, Proc. Symp. Pure Math., AMS, 33II, 27-61 (1979)
[4] C. Bushnell, P. Kutzko: The Admissible Dual of GL(N) via Compact Open Subgroups. (Ann. Math. Stud. vol 129) Princeton, N.J.: Princeton University Press 1993 · Zbl 0787.22016
[5] L. Clozel: Invariant harmonic analysis on the Schwartz space of a reductivep-adic group. In: W. Barker, P. Sally (eds) Harmonic Analysis on Reductive Groups, pp. 101-121. Progress in Mathematics. Boston Basel, Birkhäuser 1991 · Zbl 0760.22023
[6] L. Clozel: Characters of non-connected reductivep-adic groups. Canad. J. Math.39 149-167, (1987) · Zbl 0629.22008 · doi:10.4153/CJM-1987-008-3
[7] Y. Flicker: On the symmetric square: orbital integrals. Math. Ann.279, 173-191 (1987) · Zbl 0608.22008 · doi:10.1007/BF01461717
[8] S. Gelbart, I. Piatetski-Shapiro, S. Rallis: Explicit Construction of Automorphic L-functions. (Lect. Notes in Math, vol. 1254) Berlin Heidelberg New York: Springer 1987 · Zbl 0612.10022
[9] D. Goldberg: Reducibility of induced representations for Sp(2n) and So(n), Am. J. Math. (to appear) · Zbl 0851.22021
[10] D. Goldberg: Some results on reducibility for unitary groups and local AsaiL-functions, J. Reine Angew. Math.448, 65-95 (1993)
[11] D. Goldberg: Reducibility of generalized principal series representations for U(2, 2) via base change. Comp. Math.86, 245-264 (1993) · Zbl 0788.22021
[12] Harish-Chandra: Harmonic analysis on reductive p-adic groups. Proc. Symp. Pure Math. AMS,26, 167-192 (1974)
[13] Harish-Chandra: Harmonic analysis on reductive p-adic groups. Notes by G. van Dijk. (Lect. Notes Math., vol. 162) Berlin Heidelberg New York: Springer 1970 · Zbl 0202.41101
[14] R. Howe, A. Moy: Hecke algebra isomorphisms for GLn over a p-adic field, J. Algebra131, 388-424 (1990) · Zbl 0715.22019 · doi:10.1016/0021-8693(90)90182-N
[15] J. Igusa: Some results on p-adic complex powers. Amer. J. Math.106, 1013-1032 (1984) · Zbl 0589.14023 · doi:10.2307/2374271
[16] D. Joyner: On twisted orbital integral identities for PGL(3) over a p-adic field. Canad. J. Math.42, 1098-1130 (1990) · Zbl 0728.11030 · doi:10.4153/CJM-1990-059-6
[17] A.W. Knapp, E.M. Stein: Interwining operators for semisimple groups II. Invent. Math.60, 9-84 (1984) · Zbl 0454.22010 · doi:10.1007/BF01389898
[18] R. Kottwitz: Rational conjugacy classes in reductive groups. Duke Math. J.49, 785-806 (1982) · Zbl 0506.20017 · doi:10.1215/S0012-7094-82-04939-0
[19] R. Kottwitz, D. Shelstad: Twisted endoscopy I: Definitions, norm mappings and transfers factors (preprint) · Zbl 0958.22013
[20] R. Kottwitz, D. Shelstad: Twisted endsocopy II: Basic global theory, preprint
[21] R.P. Langlands: Les débuts d’une formule des traces stable. Publ. Math. Univ. Paris VII, vol 13, Paris 1983
[22] R.P. Langlands: Some identities for orbital integrals attached toGL(3), manuscript.
[23] R.P. Langlands, D. Shelstad: On the definition of transfer factors. Math. Ann.278, 219-271 (1987) · Zbl 0644.22005 · doi:10.1007/BF01458070
[24] R.P. Langlands, D. Shelstad: Descent for transfer factors. In the Grothendieck Festschrift, vol. II, pp. 485-563. Boston Basel. Birkhäuser 1990 · Zbl 0743.22009
[25] L. Morris: Tamely ramified intertwining algebras I, II, preprint. · Zbl 0854.22022
[26] G.I. Ol?anskiî: Inertwining operators and complementary series in the class of representations induced from parabolic subgroups of the general linear group over a locally compact division algebra. Math. USSR-Sb.22, 217-255 (1974) · Zbl 0309.22014 · doi:10.1070/SM1974v022n02ABEH001692
[27] O.T. O’Meara: Introduction to Quadratic Forms. Berlin Göttingen Heildelberg New York: Springer/Academic Press 1963
[28] I. Piatetski-Shapiro, S. Rallis: ?-factors of representations of classical groups. Proc. Nat. Acad. Sci. USA83, 4589-4593 (1986) · Zbl 0599.12012 · doi:10.1073/pnas.83.13.4589
[29] J. Rogawski: Automorphic Representations of Unitary Groups in Three Variables. (Ann. Math. Stud. vol. 123) Princeton, N.J.: Princeton University Press 1990
[30] P.J. Sally, Jr., M. Tadi?: Induced representations and classifications for GSP(2,F) and Sp(2, F), preprint. · Zbl 0784.22008
[31] M. Sato, T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J.65, 1-155 (1977) · Zbl 0321.14030
[32] F. Shahidi: Twisted endoscopy and reducibility of induced representations for p-adic groups. Duke Math. J.66, 1-41 (1992) · Zbl 0785.22022 · doi:10.1215/S0012-7094-92-06601-4
[33] F. Shahidi: A proof of Langlands’ conjecture on Plancherel measures; Complementary series for p-adic groups. Ann. Math. 132, 273-330 (1990) · Zbl 0780.22005 · doi:10.2307/1971524
[34] F. Shahidi: On the Ramanujan conjecture and finiteness of poles for certain L-functions. Ann. Math.127, 547-584 (1988) · Zbl 0654.10029 · doi:10.2307/2007005
[35] F. Shahidi: On multiplicativity of local factors, in Festschrift in honor of I.I. Piatetski-Shapiro; Part II. Israel Math Conf Proc3, 279-289 (1990) · Zbl 0841.11061
[36] F. Shahidi: On certainL-functions. Amer. J. Math.103, 297-356 (1981) · Zbl 0467.12013 · doi:10.2307/2374219
[37] D. Shelstad:L-indistinguishability for real groups. Math. Ann.259, 385-430 (1982) · Zbl 0506.22014 · doi:10.1007/BF01456950
[38] A. Silberger: Introduction to Harmonic Analysis of Reductive p-adic Groups. Math. Notes of Princeton University Press, Princeton,23, 1979 · Zbl 0458.22006
[39] D. Soudry: Rankin-Selberg convolutions forSO 21+1 {\(\times\)}L n : Local theory. Mem. Am. Math. Soc. (to appear) · Zbl 0805.22007
[40] D. Soudry: On the archimedean theory of Rankin-Selberg convolutions forSO 21+1 {\(\times\)}GL n (Preprint) · Zbl 0824.11034
[41] R. Steinberg: Endomorphisms of algebraic groups. Mem. Am. Math. Soc.80 (1968) · Zbl 0164.02902
[42] M. Tadi?: Representations of classical p-adic groups (Preprint) · Zbl 0859.22011
[43] M. Tadi?: Notes on representations of non-archimedeanSL(n). Pacific J. Math.152 (1992) 375-396 · Zbl 0724.22017
[44] J. Arthur: On some problems suggested by the trace formula. In: Lie Groups Representations II, Lecture Notes in Math, Vol. 1041, Springer, Berlin-Heidelberg-New York, 1983, pp. 1-49
[45] R. Kottwitz: Stable trace formula, cuspidal tempered terms. Duke Math. J.51 (1984) 611-650 · Zbl 0576.22020 · doi:10.1215/S0012-7094-84-05129-9
[46] J.-P. Labesse, R.P. Langlands:L-indistinguishability forSL 2. Can. J. Math.31 (1979) 726-785 · Zbl 0421.12014 · doi:10.4153/CJM-1979-070-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.