×

Smooth representations modulo \(\ell\) of \(\mathrm{GL}_m(D)\). (Représentations lisses modulo \(\ell\) de \(\mathrm{GL}_m(D)\).) (English) Zbl 1293.22005

Let F be a non-Archimedean locally compact field of residue characteristic \(p\), let D be a finite-dimensional central division F-algebra, and let R be an algebraically closed field of characteristic different from \(p\). The authors classify all smooth irreducible representations of GL\(_m\)(D) for \(m \geq 1,\) with coefficients in R, in terms of multisegments, generalizing works by Zelevinski, Tadić, and Vignéras. They prove that any irreducible R-representation of GL\(_m\)(D) has a unique supercuspidal support and thus get two classifications: one by supercuspidal multisegments, classifying representations with a given supercuspidal support, and one by aperiodic multisegments, classifying representations with a given cuspidal support. These constructions are made in a purely local way, with a substantial use of type theory.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] S. Ariki, On the decomposition numbers of the Hecke algebra of \(G(m,1,n)\) , J. Math. Kyoto Univ. 36 (1996), 789-808. · Zbl 0888.20011
[2] S. Ariki, Representations of Quantum Algebras and Combinatorics of Young Tableaux , Univ. Lecture Ser. 26 , Amer. Math. Soc., Providence, 2002. · Zbl 1003.17008
[3] S. Ariki et A. Mathas, The number of simple modules of the Hecke algebras of type \(G(r,1,n)\) , Math. Z. 233 (2000), 601-623. · Zbl 0955.20003 · doi:10.1007/s002090050489
[4] A. I. Badulescu, Un résultat d’irréductibilité en caractéristique non nulle , Tohoku Math. J. (2) 56 (2004), 583-592. · Zbl 1064.22003 · doi:10.2748/tmj/1113246752
[5] A. I. Badulescu, G. Henniart, B. Lemaire et V. Sécherre, Sur le dual unitaire de \(\operatorname{GL}_{r}(D)\) , Amer. J. Math. 132 (2010), 1365-1396. · Zbl 1205.22011 · doi:10.1353/ajm.2010.0009
[6] J. Bernstein et A. Zelevinski, Representations of the group \(\operatorname{GL} (n,F)\), where \(F\) is a local non-Archimedean field , Uspehi Mat. Nauk 31 (1976), 5-70. · Zbl 0342.43017
[7] J. Bernstein et A. Zelevinski, Induced representations of reductive \(p\)-adic groups, I , Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472. · Zbl 0412.22015
[8] A. Borel et G. Harder, Existence of discrete cocompact subgroups of reductive groups over local fields , J. Reine Angew. Math. 298 (1978), 53-64. · Zbl 0385.14014
[9] N. Bourbaki, Eléments de mathématique. 23. Première partie : Les structures fondamentales de l’analyse. Livre II : Algèbre. Chapitre 8 : Modules et anneaux semi-simples , Actualités Sci. Ind. 1261 , Hermann, Paris, 1958. · Zbl 0102.27203
[10] P. Broussous, V. Sécherre et S. Stevens, Smooth representations of \(\operatorname{GL}(m,D)\), V: endo-classes , Documenta Math. 17 (2012), 23-77. · Zbl 1280.22018
[11] N. Chriss et V. Ginzburg, Representation Theory and Complex Geometry , Birkhäuser, Boston, 1997. · Zbl 0879.22001
[12] J.-F. Dat, \(\nu\)-tempered representations of \(p\)-adic groups, I: \(l\)-adic case , Duke Math. J. 126 (2005), 397-469. · Zbl 1063.22017 · doi:10.1215/S0012-7094-04-12631-4
[13] J.-F. Dat, Finitude pour les représentations lisses de groupes \(p\)-adiques , J. Inst. Math. Jussieu 8 (2009), 261-333. · Zbl 1158.22020 · doi:10.1017/S1474748008000054
[14] J.-F. Dat, Un cas simple de correspondance de Jacquet-Langlands modulo \(\ell\) , Proc. London Math. Soc. 104 (2012), 690-727. · Zbl 1241.22020 · doi:10.1112/plms/pdr043
[15] J.-F. Dat, Théorie de Lubin-Tate non abélienne \(\ell\)-entière , Duke Math. J. 161 (2012), 951-1010. · Zbl 1260.11070 · doi:10.1215/00127094-1548425
[16] P. Deligne, D. Kazhdan et M.-F. Vignéras, “Représentations des algèbres centrales simples \(p\)-adiques” dans Representations of Reductive Groups Over a Local Field , Travaux en Cours, Hermann, Paris, 1984, 33-117. · Zbl 0583.22009
[17] R. Dipper, On quotients of Hom-functors and representations of finite general linear groups, I , J. Algebra 130 (1990), 235-259. · Zbl 0698.20005 · doi:10.1016/0021-8693(90)90111-Z
[18] R. Dipper et G. James, Identification of the irreducible modular representations of \(\mathrm{GL}_{n}(q)\) , J. Algebra 104 (1986), 266-288. · Zbl 0622.20032 · doi:10.1016/0021-8693(86)90215-2
[19] G. Henniart et V. Sécherre, Types et contragrédientes , à paraître à Canad. J. Math., prépublication, 2013, .
[20] R. B. Howlett et G. I. Lehrer, On Harish-Chandra induction and restriction for modules of Levi subgroups , J. Algebra 165 (1994), 172-183. · Zbl 0802.20036 · doi:10.1006/jabr.1994.1104
[21] G. James, Representations of General Linear Groups , London Math. Soc. Lecture Note Ser. 94 , Cambridge Univ. Press, Cambridge, 1984. · Zbl 0541.20025
[22] G. James, The irreducible representations of the finite general linear groups , Proc. London Math. Soc. (3) 52 (1986), 236-268. · Zbl 0587.20022 · doi:10.1112/plms/s3-52.2.236
[23] I. G. Macdonald, Symmetric Functions and Hall Polynomials , 2ème éd., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995. · Zbl 0824.05059
[24] A. Mathas, “Simple modules of Ariki-Koike algebras” dans Group Representations: Cohomology, Group Actions and Topology (Seattle, 1996) , Proc. Sympos. Pure Math. 63 , Amer. Math. Soc., Providence, 1998, 383-396. · Zbl 0899.20004 · doi:10.1090/pspum/063/1603195
[25] A. Mínguez, Sur l’irréductibilité d’une induite parabolique , J. Reine Angew. Math. 629 (2009), 107-131. · Zbl 1172.22008
[26] A. Mínguez et V. Sécherre, Types modulo \(\ell\) pour les formes intérieures de \(\operatorname{GL}_{n}\) sur un corps local non archimédien , prépublication, 2014 .
[27] A. Mínguez et V. Sécherre, Représentations banales de \(\operatorname{GL}(m,D)\) , Compos. Math. 149 (2013), 679-704.
[28] A. Mínguez et V. Sécherre, Unramified \(\ell\)-modular representations of \(\mathrm{GL}(n,F)\) and its inner forms , Int. Math. Res. Not. IMRN 2013 , art. ID rns 278.
[29] C. Mœglin et J.-L. Waldspurger, Sur l’involution de Zelevinski , J. Reine Angew. Math. 372 (1986), 136-177. · Zbl 0594.22008
[30] J. D. Rogawski, Representations of \(\operatorname{GL}(n)\) over a \(p\)-adic field with an Iwahori-fixed vector , Israel J. Math. 54 (1986), 242-256. · Zbl 0602.20038 · doi:10.1007/BF02764944
[31] V. Sécherre, Représentations lisses de \(\operatorname{GL}(m,D)\), III : Types simples , Ann. Scient. Éc. Norm. Sup. 38 (2005), 951-977. · Zbl 1106.22014 · doi:10.1016/j.ansens.2005.10.003
[32] J.-P. Serre, Linear Representations of Finite Groups , Grad. Texts in Math. 42 , Springer, New York, 1977. · Zbl 0355.20006
[33] M. Tadić, Induced representations of \(\mathrm{GL}(n,A)\) for \(p\)-adic division algebras \(A\) , J. Reine Angew. Math. 405 (1990), 48-77. · Zbl 0684.22008 · doi:10.1515/crll.1990.405.48
[34] M.-F. Vignéras, Représentations \(l\)-modulaires d’un groupe réductif \(p\)-adique avec \(l\neq p\) , Progr. Math. 137 , Birkhäuser, Boston, 1996. · Zbl 0859.22001
[35] M.-F. Vignéras, Induced \(R\)-representations of \(p\)-adic reductive groups , with an appendix by Alberto Arabia, Selecta Math. (N.S.) 4 (1998), 549-623. · Zbl 0943.22017 · doi:10.1007/s000290050040
[36] M.-F. Vignéras, “Irreducible modular representations of a reductive \(p\)-adic group and simple modules for Hecke algebras” in European Congress of Mathematics, Vol. I (Barcelona, 2000) , Progr. Math. 201 , Birkhäuser, Basel, 2001, 117-133. · Zbl 1024.22011
[37] M.-F. Vignéras, “Modular representations of \(p\)-adic groups and of affine Hecke algebras” in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) , Higher Ed. Press, Beijing, 2002, 667-677. · Zbl 1151.11325
[38] M.-F. Vignéras, “On highest Whittaker models and integral structures” in Contributions to Automorphic Forms, Geometry and Number Theory: Shalikafest 2002 , Johns Hopkins Univ. Press, Baltimore, 2004, 773-801. · Zbl 1084.11023
[39] A. Zelevinski, Induced representations of reductive \(\mathfrak{p}\)-adic groups, II: On irreducible representations of \(\operatorname{GL}(n)\) , Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210. · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.