×

An algebraic approach to the openness conjecture of demailly and Kollár. (English) Zbl 1314.32047

This paper deals with an original approach to the openness conjecture in the line of previous work by the same authors [Ann. Inst. Fourier 62, No. 6, 2145–2209 (2012; Zbl 1272.14016)].
The openness conjecture, formulated by J-P. Demailly and J. Kollár in [Ann. Sci. Éc. Norm. Supér. (4) 34, No. 4, 525–556 (2001; Zbl 0994.32021)], states that for any plurisubharmonic function \(\varphi\) such that \(e^{-\varphi}\) is locally integrable, there exists a number \(c>1\) such that \(e^{-c \varphi}\) is still locally integrable.
The authors propose a (set of) conjecture(s) of purely algebraic nature that they show to imply the openness conjecture, in an even strengthened form. More precisely, the conjectures assert that the log canonical threshold of appropriate graded sequences of ideals can be computed by one quasi-monomial valuation.
The rough strategy of the proof is as follows: first operate an algebraic reduction using Demailly’s approximation theorem that allows to compute \(c_x(\varphi)\), the complex singularity exponent of \(\varphi\), as a log canonical threshold of the sequence of multiplier ideals \(\mathfrak b_{\bullet}:=(\mathcal I(k\varphi))_{k \geq 1}\). By the conjecture, there exists a quasi-monomial valuation \(\nu\) computing the lct of this sequence. The core of the effort is then devoted to attach to \(\nu\) Kiselman numbers (or directional Lelong numbers) computing \(\nu(\mathfrak b_{\bullet})\). Then, it remains to carefully evaluate \(e^{-c_x(\varphi) \varphi}\) on the birational model provided by \(\nu\) using the properties of Kiselman numbers.
After the paper had been published, the openness conjecture was proved in [B. Berndtsson, “The openness conjecture for plurisubharmonic functions”, Preprint, arXiv:1305.5781] and [Q. Guan and X. Zhou, “Strong openness conjecture for plurisubharmonic functions”, Preprint, arXiv:1311.3781].

MSC:

32U05 Plurisubharmonic functions and generalizations
32U25 Lelong numbers
14F18 Multiplier ideals
12J20 General valuation theory for fields
14B05 Singularities in algebraic geometry

References:

[1] Ann. Polon. Math. 60 pp 173– (1994)
[2] Positivity in Algebraic Geometry II 49 (2004)
[3] DOI: 10.1007/BF01389965 · Zbl 0289.32003 · doi:10.1007/BF01389965
[4] DOI: 10.5802/aif.2746 · Zbl 1272.14016 · doi:10.5802/aif.2746
[5] DOI: 10.1353/ajm.2003.0010 · Zbl 1033.14030 · doi:10.1353/ajm.2003.0010
[6] Ann. Sci. Éc. Norm. Supér. (4) 34 pp 525– (2001) · Zbl 0994.32021 · doi:10.1016/S0012-9593(01)01069-2
[7] Notions of Convexity 127 (1994) · Zbl 0835.32001
[8] DOI: 10.1307/mmj/1030132712 · Zbl 1077.14516 · doi:10.1307/mmj/1030132712
[9] J. Differential Geom. 37 pp 323– (1993) · Zbl 0783.32013 · doi:10.4310/jdg/1214453680
[10] DOI: 10.1090/S0894-0347-05-00481-9 · Zbl 1075.14001 · doi:10.1090/S0894-0347-05-00481-9
[11] DOI: 10.1007/s00222-005-0443-2 · Zbl 1089.32032 · doi:10.1007/s00222-005-0443-2
[12] J. Algebra Geom. 1 pp 361– (1992)
[13] The Valuative Tree 1853 (2004)
[14] Acta Math. 157 pp 153– (1987)
[15] DOI: 10.1215/S0012-7094-04-12333-4 · Zbl 1061.14003 · doi:10.1215/S0012-7094-04-12333-4
[16] DOI: 10.2977/prims/1210167334 · Zbl 1146.32017 · doi:10.2977/prims/1210167334
[17] DOI: 10.5802/aif.2223 · Zbl 1120.32021 · doi:10.5802/aif.2223
[18] DOI: 10.2307/1971429 · Zbl 0731.53063 · doi:10.2307/1971429
[19] DOI: 10.1073/pnas.86.19.7299 · Zbl 0711.53056 · doi:10.1073/pnas.86.19.7299
[20] DOI: 10.1016/S0021-8693(02)00112-6 · Zbl 1076.13500 · doi:10.1016/S0021-8693(02)00112-6
[21] Commutative Algebra 56 (1980)
[22] Plurisubharmonic Functions and Positive Differential Forms (1969)
[23] Bull. Soc. Math. France 100 pp 353– (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.