×

Mortar finite elements for a heat transfer problem on sliding meshes. (English) Zbl 1189.65223

Authors’ summary: We consider a heat transfer problem with sliding bodies, where heat is generated on the interface due to friction. Neglecting the mechanical part, we assume that the pressure on the contact interface is a known function. Using mortar techniques with Lagrange multipliers, we show existence and uniqueness of the solution in the continuous setting. Moreover, two different mortar formulations are analyzed, and optimal a priori estimates are provided. Numerical results illustrate the flexibility of the approach.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
80A20 Heat and mass transfer, heat flow (MSC2010)
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Babuška, I.: The finite element method with penalty. Math. Comput. 27, 221–228 (1973) · Zbl 0299.65057
[2] Babuška, I., Zlámal, M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10, 863–875 (1973) · doi:10.1137/0710071
[3] Bernardi, C., Canuto, C., Maday, Y.: Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25(6), 1237–1271 (1988) · Zbl 0666.76055 · doi:10.1137/0725070
[4] Bertoluzza, S.: Substructuring preconditioners for the three fields domain decomposition method. Math. Comput. 73(246), 659–689 (2003) · Zbl 1042.65099 · doi:10.1090/S0025-5718-03-01550-3
[5] Braess, D.: Finite Elements. Theory, Fast Solver, and Applications in Solid Mechanics, 2nd edn. Cambridge Univ. Press, Cambridge (2001) · Zbl 0976.65099
[6] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991) · Zbl 0788.73002
[7] Ciarlet, P. Jr., Huang, J., Zou, J.: Some observations on generalized saddle-point problems. SIAM J. Matrix Anal. Appl. 25(1), 224–236 (2003) · Zbl 1130.35300 · doi:10.1137/S0895479802410827
[8] Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)
[9] Flemisch, B., Melenk, J.M., Wohlmuth, B.I.: Mortar methods with curved interfaces. Appl. Numer. Math. 54(34), 339–361 (2005) · Zbl 1078.65119 · doi:10.1016/j.apnum.2004.09.007
[10] Friedrich, K., Mán, L., Néder, Z, Váradi, K.: Numerical and finite element contact temperature analysis of steel-bronze real surfaces in dry sliding contact. Tribol. Trans. 42, 453–462 (1999) · doi:10.1080/10402009908982241
[11] Hansbo, P.: Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt. 28(2), 183–206 (2005) · Zbl 1179.65147
[12] Lamichhane, B.P., Wohlmuth, B.I.: Mortar finite elements for interface problems. Computing 72, 333–348 (2004) · Zbl 1055.65129 · doi:10.1007/s00607-003-0062-y
[13] Laursen, T.A.: Computational Contact and Impact Mechanics. Springer, Berlin (2002) · Zbl 0996.74003
[14] Laursen, T.A., McDevitt, T.W.: A mortar-finite element formulation for frictional contact problems. Int. J. Numer. Methods Eng. 48, 1525–1547 (2000) · Zbl 0972.74067 · doi:10.1002/1097-0207(20000810)48:10<1525::AID-NME953>3.0.CO;2-Y
[15] Lazarov, R.D., Pasciak, J.E., Schöberl, J., Vassilevski, P.S.: Almost optimal interior penalty discontinuous approximations of symmetric elliptic problems on non-matching grids. Numer. Math. 96(2), 295–315 (2003) · Zbl 1095.65103 · doi:10.1007/s00211-003-0476-7
[16] Miehe, C., Wriggers, P.: Contact constraints within coupled thermomechanical analysis–a finite element model. Comput. Methods Appl. Mech. Eng. 113, 301–319 (1994) · Zbl 0847.73069 · doi:10.1016/0045-7825(94)90051-5
[17] Nicolaides, R.A.: Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19(2), 349–357 (1982) · Zbl 0485.65049 · doi:10.1137/0719021
[18] Nitsche, J.: Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hamb. 36, 9–15 (1971) · Zbl 0229.65079 · doi:10.1007/BF02995904
[19] Paćzelt, I., Pere, B.: A mapping technique for a heat conduction problem on moving mesh using the hp-version of the finite element method. J. Comput. Appl. Mech. 3, 169–191 (2002) · Zbl 1006.74083
[20] Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1997) · Zbl 1151.65339
[21] Wohlmuth, B.I.: Discretization Techniques and Iterative Solvers Based on Domain Decomposition. Lectures Notes in Computational Science and Engineering, vol. 17. Springer, Berlin (2001) · Zbl 0966.65097
[22] Wohlmuth, B.I.: A V-cycle multigrid approach for mortar finite elements. SIAM J. Numer. Anal. 42, 2476–2495 (2005) · Zbl 1083.65114 · doi:10.1137/S003614290343092X
[23] Wriggers, P.: Computational Contact Mechanics. Wiley, New York (2002) · Zbl 1104.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.