×

Regular dilation and Nica-covariant representation on right LCM semigroups. (English) Zbl 1456.43004

Generalizing the celebrated Sz. Nagy dilation of a single contraction, Brehmer studied regular dilations back in the early sixties. Since then the notion of regular dilation has been investigated by many researchers and has been generalized to product systems, lattice ordered semigroups, and recently to graph products of \(\mathbb{N}\). It was shown by the author of the present paper in [J. Funct. Anal. 273, No. 2, 799–835 (2017; Zbl 1459.47005)] that for such graph products, the existence of a \(*\)-regular dilation is equivalent to the existence of a minimal isometric Nica-covariant dilation.
In the paper under review, the author extends this result to right LCM semigroups, which are unital left cancellative semigroups \(P\) such that for any \(p, q\in P\), either \(pP\cap qP=\emptyset\) or \(pP\cap qP=rP\) for some \(r\in P\). Such an element \(r\) can be considered as a right least common multiple of \(p\) and \(q\) (hence the name right LCM). The author also shows the equivalence among a \(*\)-regular dilation, minimal isometric Nica-covariant dilation, and a Brehmer-type condition. This result unifies many previous results on regular dilations, including Brehmer’s theorem, Frazho-Bunce-Popescu’s dilation of noncommutative row contractions, regular dilations on lattice ordered semigroups and graph products of \(\mathbb{N}\). Applications to many important classes of right LCM semigroups are given. In the last section of the paper, the author obtains a characterization of \(*\)-regular representations of graph products of right LCM semigroups and an application to doubly commuting representations of direct sums of right LCM semigroups.
Reviewer: Trieu Le (Toledo)

MSC:

43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
47A20 Dilations, extensions, compressions of linear operators
20F36 Braid groups; Artin groups

Citations:

Zbl 1459.47005

References:

[1] Anderson, M., Feil, T.: Lattice Ordered Groups: An Introduction. Reidel Texts in the Mathematical Sciences (1988) · Zbl 0636.06008
[2] Andô, T.: On a pair of commutative contractions. Acta Sci. Math. (Szeged) 24, 88-90 (1963) · Zbl 0116.32403
[3] Brehmer, S.: Über vetauschbare Kontraktionen des Hilbertschen Raumes. Acta Sci. Math. Szeged 22, 106-111 (1961) · Zbl 0097.31701
[4] Brownlowe, N., Ramagge, J., Robertson, D., Whittaker, M.F.: Zappa-Szép products of semigroups and their \[C^\ast C\]*-algebras. J. Funct. Anal. 266(6), 3937-3967 (2014) · Zbl 1286.22002 · doi:10.1016/j.jfa.2013.12.025
[5] Clark, L.O., an Huef, A., Raeburn, I.: Phase transitions on the Toeplitz algebras of Baumslag-Solitar semigroups. Indiana Univ. Math. J. 65(6), 2137-2173 (2016) · Zbl 1372.46046 · doi:10.1512/iumj.2016.65.5934
[6] Crisp, J., Laca, M.: On the Toeplitz algebras of right-angled and finite-type Artin groups. J. Aust. Math. Soc. 72(2), 223-245 (2002) · Zbl 1055.20028 · doi:10.1017/S1446788700003876
[7] Crisp, J., Laca, M.: Boundary quotients and ideals of Toeplitz \[C^*C\]∗-algebras of Artin groups. J. Funct. Anal. 242(1), 127-156 (2007) · Zbl 1112.46051 · doi:10.1016/j.jfa.2006.08.001
[8] Davidson, K.R., Fuller, A.H., Kakariadis, E.T.A.: Semicrossed products of operator algebras by semigroups. Mem. Am. Math. Soc. 247(1168), v+97 (2017) · Zbl 1385.47027
[9] Fountain, J., Kambites, M.: Graph products of right cancellative monoids. J. Aust. Math. Soc. 87(2), 227-252 (2009) · Zbl 1188.20071 · doi:10.1017/S144678870900010X
[10] Fuller, A.H.: Nonself-adjoint semicrossed products by abelian semigroups. Canad. J. Math. 65(4), 768-782 (2013) · Zbl 1352.47046 · doi:10.4153/CJM-2012-051-8
[11] Gaşpar, D., Suciu, N.: On the intertwinings of regular dilations. Ann. Polon. Math. 66, 105-121 (1997). (Volume dedicated to the memory of Włodzimierz Mlak) · Zbl 0874.47005 · doi:10.4064/ap-66-1-105-121
[12] Green, E.: Graph Products of Groups. Ph.D. thesis, University of Leeds (1990)
[13] Halperin, I.: Sz.-Nagy-Brehmer dilations. Acta Sci. Math. (Szeged) 23, 279-289 (1962) · Zbl 0111.11402
[14] Jackson, D.A.: Decision and separability problems for Baumslag-Solitar semigroups. Int. J. Algebra Comput. 12(1-2), 33-49 (2002). International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000) · Zbl 1010.20041
[15] Laca, M., Raeburn, I.: Semigroup crossed products and the Toeplitz algebras of nonabelian groups. J. Funct. Anal. 139(2), 415-440 (1996) · Zbl 0887.46040 · doi:10.1006/jfan.1996.0091
[16] Laca, M., Raeburn, I.: Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers. Adv. Math. 225(2), 643-688 (2010) · Zbl 1203.46045 · doi:10.1016/j.aim.2010.03.007
[17] Li, B.: Regular representations of lattice ordered semigroups. J. Oper. Theory 76(1), 33-56 (2016) · Zbl 1399.43011 · doi:10.7900/jot.2015jul03.2094
[18] Li, B.: Regular dilation on graph products of \[\mathbb{N}N\]. J. Funct. Anal. 273(2), 799-835 (2017) · Zbl 1459.47005 · doi:10.1016/j.jfa.2017.02.012
[19] Li, X.: Semigroup \[{\rm C}^*C\]∗-algebras and amenability of semigroups. J. Funct. Anal. 262(10), 4302-4340 (2012) · Zbl 1243.22006 · doi:10.1016/j.jfa.2012.02.020
[20] Li, X.: Semigroup \[C^*\]∗-Algebras (2016). arXiv:1707.05940 · Zbl 1375.46040
[21] Neumark, M.: Positive definite operator functions on a commutative group. Bull. Acad. Sci. URSS Sér. Math. [Izvestia Akad. Nauk SSSR] 7, 237-244 (1943) · Zbl 0061.25411
[22] Nica, A.: \[C^*C\]∗-algebras generated by isometries and Wiener-Hopf operators. J. Oper. Theory 27(1), 17-52 (1992) · Zbl 0809.46058
[23] Paris, L.: Artin monoids inject in their groups. Comment. Math. Helv. 77(3), 609-637 (2002) · Zbl 1020.20026 · doi:10.1007/s00014-002-8353-z
[24] Parrott, S.: Unitary dilations for commuting contractions. Pac. J. Math. 34, 481-490 (1970) · Zbl 0202.41802 · doi:10.2140/pjm.1970.34.481
[25] Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics, vol. 78. Cambridge University Press, Cambridge (2002) · Zbl 1029.47003
[26] Popescu, G.: Positive-definite functions on free semigroups. Canad. J. Math. 48(4), 887-896 (1996) · Zbl 0863.47009 · doi:10.4153/CJM-1996-045-3
[27] Popescu, G.: Positive definite kernels on free product semigroups and universal algebras. Math. Scand. 84(1), 137-160 (1999) · Zbl 0944.47046 · doi:10.7146/math.scand.a-13938
[28] Sarason, D.: Invariant subspaces and unstarred operator algebras. Pac. J. Math. 17, 511-517 (1966) · Zbl 0171.33703 · doi:10.2140/pjm.1966.17.511
[29] Shalit, O.M.: Representing a product system representation as a contractive semigroup and applications to regular isometric dilations. Canad. Math. Bull. 53(3), 550-563 (2010) · Zbl 1210.47027 · doi:10.4153/CMB-2010-060-8
[30] Solel, B.: Regular dilations of representations of product systems. Math. Proc. R. Ir. Acad. 108(1), 89-110 (2008) · Zbl 1220.46037 · doi:10.3318/PRIA.2008.108.1.89
[31] Spielberg, J.: \[C^\ast C\]*-algebras for categories of paths associated to the Baumslag-Solitar groups. J. Lond. Math. Soc. (2) 86(3), 728-754 (2012) · Zbl 1264.46040 · doi:10.1112/jlms/jds025
[32] Starling, C.: Boundary quotients of \[{\rm C}^*C\]∗-algebras of right LCM semigroups. J. Funct. Anal. 268(11), 3326-3356 (2015) · Zbl 1343.46055 · doi:10.1016/j.jfa.2015.01.001
[33] Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space, 2nd edn. Springer, New York (2010) · Zbl 1234.47001 · doi:10.1007/978-1-4419-6094-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.