×

Asymptotic behavior of eigenvalues of reciprocal power LCM matrices. (English) Zbl 1186.11011

Let \(\{x_i\}_{i=1}^{\infty}\) be a strictly increasing sequence of positive integers, let \(r\) be a positive real number and let \(q\) be a positive integer. Let \(\lambda_n^{(1)}\leq \cdots\leq\lambda_n^{(n)}\) be the eigenvalues of the reciprocal power LCM matrix \(({1\over [x_{i},x_{j}]^{r}})\). The authors show, among others, that \(\lim_{n\rightarrow\infty}\lambda_n^{(q)}=0\), \(\lim_{n\rightarrow\infty} \lambda_{n}^{(n-q+1)}\leq\sum_{i=1}^{\infty}{1\over x_{i}^{r}}\) and, for \(r>1\), \(\lim_{n\rightarrow\infty}\lambda_{ln}^{(tn-q+1)}=0\), where \(t\) and \(l\) are positive integers such that \(t\leq l-1\).
For a list of papers on eigenvalues of GCD related matrices see P. Ilmonen, P. Haukkanen and J. K. Merikoski [Linear Algebra Appl. 429, No. 4, 859–874 (2008; Zbl 1143.15016)].

MSC:

11C20 Matrices, determinants in number theory
15A18 Eigenvalues, singular values, and eigenvectors
15B36 Matrices of integers

Citations:

Zbl 1143.15016
Full Text: DOI

References:

[1] DOI: 10.2307/2371766 · Zbl 0061.24902 · doi:10.2307/2371766
[2] DOI: 10.1007/s10587-007-0048-6 · Zbl 1174.11031 · doi:10.1007/s10587-007-0048-6
[3] S?ndor, Handbook of number theory II (2004) · doi:10.1007/1-4020-2547-5
[4] Niven, An introduction to the theory of numbers (1960) · Zbl 0098.03602
[5] McCarthy, Canad. Math. Bull. 29 pp 109– (1986) · Zbl 0588.10005 · doi:10.4153/CMB-1986-020-1
[6] Lindqvist, Acta Arith. 84 pp 149– (1998)
[7] DOI: 10.1016/j.jalgebra.2007.05.005 · Zbl 1230.11036 · doi:10.1016/j.jalgebra.2007.05.005
[8] Hong, Colloq. Math. 98 pp 113– (2003)
[9] DOI: 10.1016/S0024-3795(01)00499-2 · Zbl 0995.15006 · doi:10.1016/S0024-3795(01)00499-2
[10] Hong, Acta Arith. 101 pp 321– (2002)
[11] DOI: 10.1006/jabr.1998.7844 · Zbl 1015.11007 · doi:10.1006/jabr.1998.7844
[12] DOI: 10.1016/S0024-3795(98)10052-6 · Zbl 0937.15004 · doi:10.1016/S0024-3795(98)10052-6
[13] Hilberdink, Acta Arith. 125 pp 265– (2006)
[14] DOI: 10.1007/s10587-007-0059-3 · Zbl 1174.11030 · doi:10.1007/s10587-007-0059-3
[15] DOI: 10.1215/S0012-7094-97-08601-4 · Zbl 0887.46008 · doi:10.1215/S0012-7094-97-08601-4
[16] DOI: 10.1016/0024-3795(93)00154-R · Zbl 0826.15013 · doi:10.1016/0024-3795(93)00154-R
[17] DOI: 10.1016/S0024-3795(96)00192-9 · Zbl 0883.15002 · doi:10.1016/S0024-3795(96)00192-9
[18] DOI: 10.1006/jnth.1993.1083 · Zbl 0784.11002 · doi:10.1006/jnth.1993.1083
[19] DOI: 10.1155/IJMMS.2005.925 · Zbl 1077.11019 · doi:10.1155/IJMMS.2005.925
[20] DOI: 10.1080/03081089308818225 · Zbl 0815.15022 · doi:10.1080/03081089308818225
[21] Hardy, An introduction to the theory of numbers (1960) · Zbl 0086.25803
[22] DOI: 10.1016/0024-3795(89)90572-7 · Zbl 0672.15005 · doi:10.1016/0024-3795(89)90572-7
[23] Apostol, Pacific J. Math. 41 pp 281– (1972) · Zbl 0226.10045 · doi:10.2140/pjm.1972.41.281
[24] DOI: 10.1080/03081080500054612 · Zbl 1119.11022 · doi:10.1080/03081080500054612
[25] DOI: 10.1016/S0024-3795(03)00497-X · Zbl 1036.06005 · doi:10.1016/S0024-3795(03)00497-X
[26] Hwang, Amer. Math. Monthly 111 pp 157– (2004)
[27] Horn, Matrix analysis (1985) · Zbl 0576.15001 · doi:10.1017/CBO9780511810817
[28] Hong, Algebra Colloq. 13 pp 689– (2006) · Zbl 1140.11319 · doi:10.1142/S1005386706000642
[29] DOI: 10.1017/S0017089504001995 · Zbl 1083.11021 · doi:10.1017/S0017089504001995
[30] DOI: 10.1016/j.laa.2005.10.009 · Zbl 1131.11018 · doi:10.1016/j.laa.2005.10.009
[31] DOI: 10.1016/j.jnt.2005.03.004 · Zbl 1080.11022 · doi:10.1016/j.jnt.2005.03.004
[32] DOI: 10.1016/j.jalgebra.2004.07.026 · Zbl 1064.11024 · doi:10.1016/j.jalgebra.2004.07.026
[33] Hong, Acta Arith. 111 pp 165– (2004)
[34] DOI: 10.1112/plms/s1-7.1.208 · JFM 08.0074.03 · doi:10.1112/plms/s1-7.1.208
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.