×

Spectral asymptotics for a family of LCM matrices. (English) Zbl 1530.47036

St. Petersbg. Math. J. 34, No. 3, 463-481 (2023) and Algebra Anal. 34, No. 3, 207-231 (2023).
Let \(E=E(\sigma,\tau)\) be the compact selfadjoint positive definite operator on \(\ell^2(\mathbb{N})\) (whose matrix with respect to the standard basis is) given by \(E=\left[\frac{n^\sigma m^\sigma}{[n,m]^\tau}\right]_{n,m=1}^\infty\), where \([n,m]\) is the least common multiple (LCM) of \(n\) and \(m\) and \(\sigma,\tau\in\mathbb{R}\) satisfy \(\tau>0\), \(\tau>\sigma+1/2\) and \(\rho:=\tau-2\sigma>0\). By a prime factorization of \(n\) and \(m\), it follows that the eigenvalues of \(E\) can be written as products over primes \(p\) of eigenvalues of operators \(E_p=[p^{(j+k)\sigma} p^{-\tau\max(j,k)}]_{j,k=0}^\infty\). Asymptotic analysis of the eigenvalues of the latter, leads to the main result: \(\lambda_n(E)=\kappa n^{-\rho}+o(n^{-\rho})\) with \(\kappa=\kappa(\sigma,\tau)>0\). For \(\rho=1\) or \(\rho=1/2\), explicit values for \(\kappa\) can be obtained. Two applications are considered. Using the Riemann zeta function \(\zeta(s)\) a lower triangular Toeplitz operator \(T=T(\psi_\sigma)\) with symbol \(\psi_\sigma(s)=\zeta(\sigma+s)\) can be considered, and the spectral norm of a finite section \(T_N\) gives a lower bound for \(\max_{|t|\le T}|\zeta(\sigma+it)|\) for \(1/2<\sigma\le1\) as \(N=N(\sigma,T)\to\infty\). Since \(T_N^*T_N=\zeta(2\sigma)E(\sigma,2\sigma)\) this is linked to the previous results. Using a connection with the Beurling zeta function (see [H.G. Diamond and W.-B. Zhang, Beurling generalized numbers. Providence, RI: American Mathematical Society (AMS) (2016; Zbl 1378.11002)]), a sharper bound for the \(o(n^{-\rho})\) term in the main result can be obtained.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
11C20 Matrices, determinants in number theory

Citations:

Zbl 1378.11002

References:

[1] C. Aistleitner, Lower bounds for the maximum of the Riemann zeta function along vertical lines, Math. Ann. 365 (2016), no. 1-2, 473-496. 3498919 · Zbl 1342.11071
[2] M. Balazard, La version de Diamond de la m\'ethode de l’hyperbole de Dirichlet, Enseig. Math. (2) 45 (1999), no. 3-4, 253-270. 1742330 · Zbl 0997.11078
[3] E. B\'edos, On F\o lner nets\textup , Szego’s theorem and other eigenvalue distribution theorems, Exposition. Math. 15 (1997), no. 3, 193-228. 1458766 · Zbl 0886.46056
[4] J. M. Bogoya, A. B\"ottcher, and S. M. Grudsky, Eigenvalues of Hermitian Toeplitz matrices with polynomially increasing entries, J. Spectr. Theory 2 (2012), no. 3, 267-292. 2947288 · Zbl 1258.15011
[5] A. Bondarenko and K. Seip, Large GCD sums and extreme values of the Riemann zeta function, Duke Math. J. 166 (2017), no. 9, 1685-1701. 3662441 · Zbl 1394.11063
[6] K. Bourque and S. Ligh, Matrices associated with arithmetical functions, Linear Multilinear Algebra 34 (1993), no. 3-4, 261-267. 1304611 · Zbl 0815.15022
[7] A. B\"ottcher, Schatten norms of Toeplitz matrices with Fisher-Hartwig singularities, Electron. J. Linear Algebra 15 (2006), 251-259. 2255478 · Zbl 1140.47310
[8] A. B\"ottcher and J. Virtanen, Norms of Toeplitz matrices with Fisher-Hartwig symbols, SIAM J. Matrix Anal. Appl. 29 (2007), no. 2, 660-671. 2318370 · Zbl 1145.47023
[9] H. Diamond and W.-B. Zhang, Beurling generalized numbers, Math. Surveys Monogr., vol. 213, Amer. Math. Soc., Providence, RI, 2016. 3559358 · Zbl 1378.11002
[10] P. Haukkanen, An upper bound for the \(l_p\)-norm of a GCD-related matrix, J. Inequal. Appl. 2006, Art. ID 25020, 1-6. 2215475 · Zbl 1096.15009
[11] H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in \(L^2(0,1)\), Duke Math. J. 86 (1997), no. 1, 1-37. 1427844 · Zbl 0887.46008
[12] T. Hilberdink, An arithmetical mapping and applications to \(\Omega \)-results for the Riemann zeta function, Acta Arith. 139 (2009), no. 4, 341-367. 2545934 · Zbl 1252.11071
[13] \bysame , Singular values of multiplicative Toeplitz matrices, Linear Multilinear Algebra 65 (2017), no. 4, 813-829. 3606835 · Zbl 1390.15030
[14] \bysame , Matrices with multiplicative entries are tensor products, Linear Algebra Appl. 532 (2017), 179-197. 3688636 · Zbl 06770952
[15] S. Hong and R. Loewy, Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasg. Math. J. 46 (2004), no. 3, 551-569. 2094810 · Zbl 1083.11021
[16] S. Hong and K. S. Enoch Lee, Asymptotic behavior of eigenvalues of reciprocal power LCM matrices, Glasg. Math. J. 50 (2008), 163-174. 2381740 · Zbl 1186.11011
[17] J. Korevaar, A century of complex Tauberian theory, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 4, 475-531. 1920279 · Zbl 1001.40007
[18] P. Lindqvist and K. Seip, Note on some greatest common divisor matrices, Acta Arith. 84 (1998), no. 2, 149-154. 1614259 · Zbl 0898.11007
[19] M. Mattila and P. Haukkanen, On the eigenvalues of certain number-theoretic matrices, East-West J. Math. 14 (2012), no. 2, 121-130. 3076473 · Zbl 1275.15012
[20] N. Nikolski, Toeplitz matrices and operators, Cambridge Stud. Adv. Math., vol. 182, Cambridge Univ. Press, Cambridge, 2020. 4319036 · Zbl 1466.15001
[21] N. Nikolski and A. Pushnitski, Szego-type limit theorems for “multiplicative Toeplitz” operators and non-F\o lner approximations, Algebra i Analiz 32 (2020), no. 6, 101-123; English transl., St. Petersburg Math. J. 32 (2021), no. 6, 1033-1050 4219493 · Zbl 1512.47055
[22] N. Nikolski, In a shadow of the RH\textup : cyclic vectors of Hardy spaces on the Hilbert multidisc, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 5, 1601-1626. 3025149 · Zbl 1267.30108
[23] H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875-1876), 208-212. 1575630 · JFM 08.0074.03
[24] O. Toeplitz, Zur Theorie der Dirichletschen Reihen, Amer. J. Math. 60 (1938), no. 4, 880-888. 1507354 · Zbl 0020.01802
[25] A. Wintner, Diophantine approximations and Hilbert’s space, Amer. J. Math. 66 (1944), no. 4, 564-578. 11497 · Zbl 0061.24902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.