×

On nonsingular power LCM matrices. (English) Zbl 1140.11319

Summary: Let \(e\geq 1\) be an integer and \(S=\{x_1,\dots,x_n\}\) a set of \(n\) distinct positive integers. The matrix \(([x_i,x_j]^e)\) having the power \([x_i,x_j]^e\) of the least common multiple of \(x_i\) and \(x_j\) as its \((i, j)\)-entry is called the power least common multiple (LCM) matrix defined on \(S\). The set \(S\) is called gcd-closed if \((x_i,x_j)\in S\) for \(1\leq i,j\leq n\). Hong showed in 2004 [Acta Arith. 111, No. 2, 165–177 (2004; Zbl 1047.11022) ] that if the set \(S\) is gcd-closed such that every element of \(S\) has at most two distinct prime factors, then the power LCM matrix on \(S\) is nonsingular. In this paper, we use Hong’s method developed in his previous papers to consider the next case. We prove that if every element of an arbitrary gcd-closed set \(S\) is of the form \(pqr\), or \(p^2qr\), or \(p^3qr\), where \(p\), \(q\) and \(r\) are distinct primes, then except for the case \(e=1\) and \(270,520\in S\), the power LCM matrix on \(S\) is nonsingular. We also show that if \(S\) is a gcd-closed set satisfying \(x_i<180\) for all \(1\leq i\leq n\), then the power LCM matrix on \(S\) is nonsingular. This proves that 180 is the least primitive singular number. For the lcm-closed case, we establish similar results.

MSC:

11C20 Matrices, determinants in number theory
11A25 Arithmetic functions; related numbers; inversion formulas

Citations:

Zbl 1047.11022
Full Text: DOI

References:

[1] DOI: 10.2140/pjm.1972.41.281 · Zbl 0226.10045 · doi:10.2140/pjm.1972.41.281
[2] DOI: 10.1007/978-1-4684-9910-0 · doi:10.1007/978-1-4684-9910-0
[3] DOI: 10.1016/0024-3795(89)90572-7 · Zbl 0672.15005 · doi:10.1016/0024-3795(89)90572-7
[4] DOI: 10.1016/0024-3795(92)90042-9 · Zbl 0761.15013 · doi:10.1016/0024-3795(92)90042-9
[5] DOI: 10.1080/03081089308818225 · Zbl 0815.15022 · doi:10.1080/03081089308818225
[6] DOI: 10.1006/jnth.1993.1083 · Zbl 0784.11002 · doi:10.1006/jnth.1993.1083
[7] DOI: 10.1016/0024-3795(93)00154-R · Zbl 0826.15013 · doi:10.1016/0024-3795(93)00154-R
[8] DOI: 10.1215/S0012-7094-97-08601-4 · Zbl 0887.46008 · doi:10.1215/S0012-7094-97-08601-4
[9] DOI: 10.1006/jabr.1998.7844 · Zbl 1015.11007 · doi:10.1006/jabr.1998.7844
[10] DOI: 10.1080/03081089908818599 · Zbl 0932.11018 · doi:10.1080/03081089908818599
[11] DOI: 10.4064/aa101-4-2 · Zbl 0987.11014 · doi:10.4064/aa101-4-2
[12] DOI: 10.1016/S0024-3795(01)00499-2 · Zbl 0995.15006 · doi:10.1016/S0024-3795(01)00499-2
[13] DOI: 10.4064/cm98-1-9 · Zbl 1047.11023 · doi:10.4064/cm98-1-9
[14] DOI: 10.4064/aa111-2-5 · Zbl 1047.11022 · doi:10.4064/aa111-2-5
[15] DOI: 10.1016/j.jalgebra.2004.07.026 · Zbl 1064.11024 · doi:10.1016/j.jalgebra.2004.07.026
[16] DOI: 10.1016/j.jnt.2005.03.004 · Zbl 1080.11022 · doi:10.1016/j.jnt.2005.03.004
[17] DOI: 10.1017/S0017089504001995 · Zbl 1083.11021 · doi:10.1017/S0017089504001995
[18] Lindqvist P., Acta Arith. 84 pp 149–
[19] DOI: 10.4153/CMB-1986-020-1 · Zbl 0588.10005 · doi:10.4153/CMB-1986-020-1
[20] Smith H. J. S., Proc. London Math. Soc. 7 pp 208–
[21] DOI: 10.2307/2371766 · Zbl 0061.24902 · doi:10.2307/2371766
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.