×

Homotopy and group cohomology of arrangements. (English) Zbl 0880.55007

Summary: It is well known that the complexification of the complement of the arrangement of reflecting hyperplanes for a finite Coxeter group is an Eilenberg-MacLane space. In general, the cohomology of the complement of a general complex arrangement is well behaved and well understood. In this paper we consider the homotopy theory of such spaces. In particular, we study the Hurewicz map connecting homotopy and homology. As a consequence we are able to derive understanding of the “obstruction” to such spaces being Eilenberg-MacLane spaces. In particular, in the case of arrangements in a three-dimensional vector space, we find that whether or not the complement is Eilenberg-MacLane depends solely on its fundamental group.

MSC:

55P20 Eilenberg-Mac Lane spaces
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
20F36 Braid groups; Artin groups
Full Text: DOI

References:

[1] Arnold, V. I., Math. Notes, 5, 138-140 (1969) · Zbl 0277.55002
[2] Arvola, W., The fundamental group of the complement of an arrangement of complex hyperplanes, Topology, 31, 757-765 (1992) · Zbl 0772.57001
[3] W. Arvola, Bounds on the cohomological dimension of the groups of certain arrangements of hyperplanes, Preprint.; W. Arvola, Bounds on the cohomological dimension of the groups of certain arrangements of hyperplanes, Preprint. · Zbl 0731.57011
[4] Bredon, G., Topology and Geometry (1993), Springer: Springer Berlin · Zbl 0791.55001
[5] Brieskorn, Sur les groupes de tresses (d’après V.I. Arnol’d), (Séminaire Bourbaki 1971/72. Séminaire Bourbaki 1971/72, Lecture Notes in Math., 317 (1973), Springer: Springer Berlin), 21-44 · Zbl 0277.55003
[6] Brown, K. S., Cohomology of Groups, (Graduate Texts in Math., 87 (1982), Springer: Springer Berlin) · Zbl 0367.18012
[7] Cohen, D. E., Groups of Cohomological Dimension One, (Lecture Notes in Math., 245 (1972), Springer: Springer Berlin) · Zbl 0231.20018
[8] Deligne, P., Les immeubles des groupes de tresses généralisés, Invent. Math., 17, 273-302 (1972) · Zbl 0238.20034
[9] Falk, M.; Randell, R., On the homotopy theory of arrangements, (Complex Analytic Singularities. Complex Analytic Singularities, Adv. Stud. Pure Math., 8 (1987), North-Holland), 101-124 · Zbl 0636.14003
[10] Fox, R.; Neuwirth, L., The braid groups, Math. Scand., 10, 119-126 (1962) · Zbl 0117.41101
[11] Gutierrez, M. A.; Ratcliffe, J. G., On the second homotopy group, Quart. J. Math. Oxford Ser., 32, 2, 45-55 (1981) · Zbl 0457.57002
[12] Hamm, H.; Lê, D. T., Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup., 6, 4, 317-366 (1973) · Zbl 0276.14003
[13] Hattori, H., Topology of \(C^n\) minus a finite number of affine hyperplanes in general position, J. Fac. Sci. Univ. Tokyo, 22, 205-219 (1975) · Zbl 0306.55011
[14] Kaplansky, I., Fields and Rings (1972), Chicago Univ. Press: Chicago Univ. Press Chicago · Zbl 1001.16500
[15] Milnor, J., Singular Points of Complex Hypersurfaces, (Ann. of Math. Stud. (1968), Princeton Univ. Press: Princeton Univ. Press Princeton) · Zbl 0184.48405
[16] Orlik, P.; Solomon, L., Combinatorics and topology of complements of hyperplanes, Invent. Math., 56, 167-189 (1980) · Zbl 0432.14016
[17] Orlik, P.; Terao, H., Arrangements of Hyperplanes, (Grundlehren Math. Wiss., 300 (1992), Springer: Springer New York) · Zbl 0757.55001
[18] Randell, R., Invent. Math., 80, 467-468 (1985), Correction · Zbl 0596.14014
[19] Randell, R., Lattice-isotopic arrangements are topologically isomorphic, (Proc. Amer. Math. Soc., 107 (1989)), 555-559 · Zbl 0681.57016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.