×

A new analysis for the Keller-Segel model of fractional order. (English) Zbl 1365.65233

Summary: In this study, we discuss the application of an analytical technique namely modified homotopy analysis transform method (MHATM) for solving coupled one- dimensional time-fractional Keller-Segel (K-S) equations [E. F. Keller and L. A. Segel, J. Theor. Biol. 26, No. 3, 399–415 (1970; Zbl 1170.92306)]. The MHATM is a new analytical technique based on homotopy polynomial. We provide a convergence analysis of MHATM and the solution obtained by the proposed method is verified through different graphical representations. The results demonstrate that the proposed methodology is very useful and simple in the determination of the solution of the K-S equations of fractional order.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35R11 Fractional partial differential equations
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1170.92306
Full Text: DOI

References:

[1] Atangana, A.: Extension of the Sumudu homotopy perturbation method to an attractor for one-dimensional Keller-Segel equations. Appl. Math. Modell. 39, 2909-2916 (2015) · Zbl 1323.93056 · doi:10.1016/j.apm.2014.09.029
[2] Atangana, A., Alabaraoye, E.: Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations. Adv. diff. equat. 94, 1-14 (2013) · Zbl 1380.92026
[3] Argyros, I.K.: Convergence and Applications of Newton-type Iterations. Springer-Verlag, New York (2008) · Zbl 1153.65057
[4] Anastassiou, G.A.: Fractional differentiation inequalities. Springer, New York (2009) · Zbl 1181.26001
[5] Anastassiou, G.A.: Fractional representation formulae and right fractional inequalities. Math. Comput. Modell. 54, 3098-3115 (2011) · Zbl 1235.26007 · doi:10.1016/j.mcm.2011.07.040
[6] Anastassiou, G.A.: Advanced fractional Taylor’s formula. J. Comput. Anal. Appl. 21(7), 1185-1204 (2016) · Zbl 1337.26005
[7] Caputo, V., Mainardi, F.: A new dissipation model based on memory mechanism. Pure. Appl. Geophys. 91, 134-147 (1971) · Zbl 1213.74005 · doi:10.1007/BF00879562
[8] Hilfer, R.: Application of Fractional Calculus in Physics World Scientific (2000) · Zbl 1046.82009
[9] Jafari, H., Golbabai, A., Seifi, S., Sayevand, K.: Homotopy analysis method for solving multi-term linear and nonlinear diffusion—wave equations of fractional order. Comput. Math. Appl. 59(3), 1337-1344 (2010) · Zbl 1189.65250 · doi:10.1016/j.camwa.2009.06.020
[10] Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Bio. 26(3), 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[11] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, The Netherlands (2006) · Zbl 1092.45003
[12] Khan, N.A., Jamil, M., Ara, A.: Approximate solutions to time fractional Schrodinger equation via homotopy analysis method. ISRN Math. Phys. 2012 (2012). Article ID 197068, 11 pages · Zbl 1245.35141
[13] Kumar, S.: A new analytical modelling for telegraph equation via Laplace transform. Appl. Math. Modell. 38(13), 3154-3163 (2014) · Zbl 1297.81029 · doi:10.1016/j.apm.2013.11.035
[14] Kumar, S., Rashidi, M.M.: New analytical method for gas dynamic equation arising in shock fronts. Comput. Phy. Commun. 185(7), 1947-1954 (2014) · Zbl 1351.35253 · doi:10.1016/j.cpc.2014.03.025
[15] Kumar, S., Yildirim, A., Khan, Y., Leilei, W.: A fractional model of the diffusion equation and its analytical solution using Laplace transform. Sci. Iran 19(4), 1117-1123 (2012) · doi:10.1016/j.scient.2012.06.016
[16] Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics. Int. J. Nonlinear Mech. 32(5), 815-822 (1997) · Zbl 1031.76542 · doi:10.1016/S0020-7462(96)00101-1
[17] Liao, S.J.: Beyond Perturbation: Introduction to the homotopy analysis method. Chapman and Hall CRC Press, Boca Raton (2003) · Zbl 1051.76001 · doi:10.1201/9780203491164
[18] Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147(2), 499-513 (2004) · Zbl 1086.35005
[19] Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119(4), 297-354 (2007) · Zbl 1533.34017 · doi:10.1111/j.1467-9590.2007.00387.x
[20] Liao, S.J.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 14(4), 983-997 (2009) · Zbl 1221.65126 · doi:10.1016/j.cnsns.2008.04.013
[21] Magrenan, A.A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215-224 (2014) · Zbl 1338.65277
[22] Miller, K.S., Ross, B.: An introduction to the fractional integrals and derivativestheory and application (1993) · Zbl 0789.26002
[23] Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177(2), 488-494 (2006) · Zbl 1096.65131
[24] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, NY, USA (1974) · Zbl 0292.26011
[25] Odibat, Z., Momani, S., Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Modell. 34(3), 593-600 (2010) · Zbl 1185.65139 · doi:10.1016/j.apm.2009.06.025
[26] Odibat, Z.: A study on the convergence of homotopy analysis method. Appl. Math. Comput. 217, 782-789 (2010) · Zbl 1203.65105
[27] Odibat, Z., Bataineh, A.S.: An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials. Math. Meth. Appl. Sci. 38, 991-1000 (2015) · Zbl 1318.34021 · doi:10.1002/mma.3136
[28] Podlubny, I.: Fractional differential equations. Academic, New York (1999) · Zbl 0924.34008
[29] Pandey, R.K., Singh, Om P., Baranwal, V.K.: An analytic algorithm for the spacetime fractional advectiondispersion equation. Comput. Phys. Commun. 182, 1134-1144 (2011) · Zbl 1217.65196 · doi:10.1016/j.cpc.2011.01.015
[30] Magin, R.L.: Fractional calculus in bio-engineering. Inc. Connecticut, Begell House Publisher (2006)
[31] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: Theory and applications. Gordon and Breach, New York (1993) · Zbl 0818.26003
[32] Vishal, K., Kumar, S., Das, S.: Application of homotopy analysis method for fractional swift Hohenberg equation-Revisited. Appl. Math. Modell. 36(8), 3630-3637 (2012) · Zbl 1252.65179 · doi:10.1016/j.apm.2011.10.001
[33] Yang, X.J., Baleanu, D., Srivastava, H.M.: Local fractional integral transform and their applications. Elsevier Academic Press (2015) · Zbl 1185.65139
[34] Yang, X.J., Baleanu, D.: Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 17, 625-628 (2013) · doi:10.2298/TSCI121124216Y
[35] Zaslavsky, G.M.: Hamiltonian chaos and fractional dynamics. Oxford University Press (2005) · Zbl 1083.37002
[36] Zhang, X., Tang, B., He, Y.: Homotopy analysis method for higher-order fractional integro-differential equations. Comput. Math. Appl. 62(8), 3194-3203 (2011) · Zbl 1232.65120 · doi:10.1016/j.camwa.2011.08.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.