×

Extended gravitationally decoupled Finch-Skea anisotropic model using embedding class I spacetime. (English) Zbl 1543.83034

Summary: In this study, we obtained a completely deformed Finch-Skea anisotropic solution using embedding Class I spacetime. The solution so obtained has been utilized to depict the model for compact objects such as neutron stars and white dwarfs. In order to find a completely deformed anisotropic solution, we apply gravitational decoupling via a complete geometric deformation approach which leads to two systems of equations. The first system is solved by using the Karmarkar condition together with a Finch-Skea ansatz while the density mimic approach together with EoS has been applied to obtain the solution for the second system. The interior anisotropic solution is smoothly matched with the exterior Schwarzschild solution. The physical viability of the solution has been tested via several physical aspects such as pressure, density, anisotropy, and energy conditions. The stability and equilibrium conditions are also analyzed for the solution. Furthermore, it is observed that the anisotropy enhances in the presence of gravitational decoupling, which may help in preventing the gravitational collapse of the star due to the repulsive anisotropic force.

MSC:

83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
Full Text: DOI

References:

[1] Kramer, V. M., Strong-field gravity tests with the double pulsar, Phys. Rev. X, 11, Article 041050 pp., 2021
[2] Abbott, B. P., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116, 22, 2016
[3] Abbott, B. P., Erratum: tests of general relativity with GW150914, Phys. Rev. Lett., 121, 12, Article 129902 pp., 2018
[4] Abbott, B. P., Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1, Phys. Rev. D, 100, Article 104036 pp., 2019
[5] Randall, Lisa; Sundrum, Raman, Large mass hierarchy from a small extra dimension, Phys. Rev. Lett., 83, 3370-3373, 1999 · Zbl 0946.81063
[6] Randall, Lisa; Sundrum, Raman, An alternative to compactification, Phys. Rev. Lett., 83, 4690-4693, 1999 · Zbl 0946.81074
[7] Shiromizu, Tetsuya; Maeda, Kei-ichi; Sasaki, Misao, The Einstein equations on the 3-brane world, Phys. Rev. D, 62, Article 024012 pp., 2000
[8] Shah, Hasrat Hussain, Black hole formation due to collapsing dark matter in a presence of dark energy in the brane-world scenario, Internat. J. Modern Phys. D, 27, 03, Article 1850020 pp., 2018 · Zbl 1430.83094
[9] Ovalle, J., Searching exact solutions for compact stars in braneworld: A conjecture, Modern Phys. Lett. A, 23, 3247, 2008 · Zbl 1165.83352
[10] Ovalle, J., Decoupling gravitational sources in general relativity: From perfect to anisotropic fluids, Phys. Rev. D, 95, Article 104019 pp., 2017
[11] Zubair, M.; Azmat, H., Complexity analysis of dynamical spherically-symmetric dissipative self-gravitating objects in modified gravity, Ann. Phys., 420, Article 168248 pp., 2020
[12] Muneer, Q.; Zubair, M.; Rahseed, M., Gravitational decoupled anisotropic spherical solutions in f(R, T) gravity by minimal geometric deformation approach, Phys. Scr., 96, Article 125015 pp., 2021
[13] Fernandes-Silva, A.; Ferreira-Martins, A. J.; da Rocha, R., The extended minimal geometric deformation deformation of Su \((N)\) dark glueball condensates, Eur. Phys. J. C, 78, 631, 2018
[14] Contreras, E.; Bargueno, P., Minimal geometric deformation in asymptotically (A-)ds space-times and the isotropic sector for a polytropic black hole, Eur. Phys. J. C, 78, 985, 2018
[15] Estrada, M.; Prado, R., The gravitational decoupling method: the higher-dimensional case to find new analytic solutions, Eur. Phys. J. Plus, 134, 168, 2019
[16] Estrada, M., The top quark charge asymmetry in \(t \overline{t} \gamma\) production at the LHC, Eur. Phys. J. C, 79, 918, 2019
[17] Gabbanelli, L.; Ovalle, J.; Sotomayor, A.; Stuchlik, Z.; Casadio, R., A causal Schwarzschild-de Sitter interior solution by gravitational decoupling, Eur. Phys. J. C, 79, 486, 2019
[18] Ovalle, J.; PosadaCand; Stuchlik, Z., Anisotropic ultracompact Schwarzschild star by gravitational decoupling, Class. Quantum Gravity, 36, Article 205010 pp., 2019 · Zbl 1478.83169
[19] Muneer, Q.; Zubair, M.; Rahseed, M., Gravitational decoupled anisotropic spherical solutions in f(R, T) gravity by minimal geometric deformation approach, Phys. Scr., 96, 12, Article 125015 pp., 2021
[20] Hensh, S.; Stuchlik, Z., Anisotropic Tolman VII solution by gravitational decoupling, Eur. Phys. J. C, 79, 834, 2019
[21] Rincón, Á.; Gabbanelli, L.; Contreras, E.; Tello-Ortiz, F., Minimal geometric deformation in a Reissner-Nordström background, Eur. Phys. J. C, 79, 10, 873, 2019
[22] da Rocha, R., MGD Dirac stars, Symmetry, 12, 508, 2020
[23] Contreras, E.; Ovalle, J.; Casadio, R., Gravitational decoupling for axially symmetric systems and rotating black holes, Phys. Rev. D, 103, Article 044020 pp., 2021
[24] Ovalle, J.; Casadio, R.; Contreras, E.; Sotomayor, A., Hairy black holes by gravitational decoupling, Phys. Dark Univ., 31, Article 100744 pp., 2021
[25] Tello-Ortiz, F., Minimally deformed anisotropic dark stars in the framework of gravitational decoupling, Eur. Phys. J. C, 80, 413, 2020
[26] Morales, E.; Tello-Ortiz, F., Compact anisotropic models in general relativity by gravitational decoupling, Eur. Phys. J. C, 78, 841, 2018
[27] Las Heras, C.; Leon, P., Using MGD gravitational decoupling to extend the isotropic solutions of einstein equations to the anisotropical domain, Fortschr. Phys., 66, Article 1800036 pp., 2018 · Zbl 1535.83015
[28] Leon, P.; Sotomayor, A., Braneworld-Klein-Gordon system in the framework of gravitational decoupling, Fortschr. Phys., 69, Article 2100017 pp., 2021 · Zbl 1537.83161
[29] Azmat, H.; Zubair, M., An anisotropic version of Tolman VII solution in f(R, T) gravity via gravitational decoupling MGD approach, Eur. Phys. J. Plus, 136, 112, 2021
[30] Azmat, H.; Zubair, M.; Ahmad, Z., Study of anisotropic and non-uniform gravastars by gravitational decoupling in f(R,T) gravity, Ann. Physics, 439, Article 168769 pp., 2022 · Zbl 1487.85006
[31] Linares Cedeño, F. X.; Contreras, E., Gravitational cracking and complexity in the framework of gravitational decoupling, Phys. Dark Univ., 28, Article 100543 pp., 2020
[32] Panotopoulos, G.; Rincón, Á., Minimal geometric deformation in a cloud of strings, Eur. Phys. J. C, 78, 851, 2018
[33] Maurya, S. K.; Errehymy, A.; Singh, K. N.; Tello-Ortiz, F.; Daoud, M., Study of anisotropic strange stars in \(f ( R , T )\) gravity: An embedding approach under the simplest linear functional of the matter-geometry coupling, Phys. D., 30, Article 100640 pp., 2020
[34] Maurya, S. K.; Tello-Ortiz, F., Decoupling gravitational sources by MGD approach in rastall gravity, Phys. Dark Univ., 29, Article 100577 pp., 2020
[35] Maurya, S. K.; Pradhan, A.; Tello-Ortiz, F.; Nag, Riju, Minimally deformed anisotropic stars by gravitational decoupling in Einstein-Gauss-Bonnet gravity, Eur. Phys. J. C, 81, 848, 2021
[36] Ovalle, J., Decoupling gravitational sources in general relativity: From perfect to anisotropic fluids, Phys. Lett. B, 788, 213, 2019 · Zbl 1405.83006
[37] Maurya, S. K.; Al Aamri, A. M.; Al Aamri, A. K.; Nag, R., Spherically symmetric anisotropic charged solution under complete geometric deformation approach, Eur. Phys. J. C, 81, 701, 2021
[38] Maurya, S. K., Extended gravitational decoupling (GD) solution for charged compact star model, Eur. Phys. J. C, 80, 429, 2020
[39] Zubair, M.; Amin, M.; Azmat, H., Anisotropic charged Heintzmann solution using gravitational decoupling through extended geometric deformation approach, Phys. Scr., 96, Article 125008 pp., 2021
[40] Sharif, M.; Saba, Saadia, Extended gravitational decoupling approach in f(R) gravity, Internat. J. Modern Phys. D, 29, 06, Article 2050041 pp., 2020 · Zbl 1443.83054
[41] Sharif, M.; Mughani, Q. T., Extended gravitational decoupled charged anisotropic solutions, Chinese J. Phys., 65, 207, 2020 · Zbl 07832445
[42] Zubair, M.; Azmat, H.; Amin, M., Charged anisotropic fluid sphere in comparison with its uncharged analogue through extended geometric deformation, Chinese J. Phys., 2021 · Zbl 1539.83027
[43] Abellán, G.; Rincón, Á.; Fuenmayor, E.; Contreras, E., Anisotropic interior solution by gravitational decoupling based on a non-standard anisotropy, Eur. Phys. J. Plus, 135, 7, 606, 2020
[44] Contreras, E.; Rincón, Á.; Bargueño, P., A general interior anisotropic solution for a BTZ vacuum in the context of the Minimal Geometric Deformation decoupling approach, Eur. Phys. J. C, 79, 3, 216, 2019
[45] Tello-Ortiz, F.; Rincón, Á.; Bhar, P.; Gomez-Leyton, Y., Durgapal IV model in light of the minimal geometric deformation approach, Chin. Phys. C, 44, Article 105102 pp., 2020
[46] Dayanandan, B., Self-gravitating anisotropic star using gravitational decoupling, Phys. Scr., 96, 12, Article 125041 pp., 2021
[47] Sharif, M.; Sadiq, S., Gravitational decoupled charged anisotropic spherical solutions, Eur. Phys. J. C, 78, 410, 2018
[48] Sharif, M.; Aslam, M., Compact objects by gravitational decoupling in f(R) gravity, Eur. Phys. J. C, 81, 641, 2021
[49] Sharif, M.; Sadiq, S., Gravitational decoupled anisotropic solutions for cylindrical geometry, Eur. Phys. J. Plus, 133, 245, 2018
[50] Casadio, R.; Contreras, E.; Ovalle, J.; Sotomayor, A.; Stuchlik, Z., Isotropization and change of complexity by gravitational decoupling, Eur. Phys. J. C, 79, 826, 2019
[51] Ovalle, J.; Contreras, E.; Stuchlik, Z., Energy exchange between relativistic fluids: The polytropic case, Eur. Phys. J. C, 82, 211, 2022
[52] Carrasco-Hidalgo, M.; Contreras, E., Ultracompact stars with polynomial complexity by gravitational decoupling, Eur. Phys. J. C, 81, 8, 757, 2021
[53] Maurya, S. K.; Errehymy, A.; Nag, R.; Daoud, M., Role of complexity on self-gravitating compact star by gravitational decoupling, Fortschr. Phys., 70, 5, Article 2200041 pp., 2022 · Zbl 1543.85002
[54] Contreras, E.; Stuchlik, Z., Energy exchange between Tolman VII and a polytropic fluid, Eur. Phys. J. C, 82, 4, 365, 2022
[55] Maurya, S. K.; Govender, M.; Kaur, S.; Nag, R., Isotropization of embedding Class I spacetime and anisotropic system generated by complexity factor in the framework of gravitational decoupling, Eur. Phys. J. C, 82, 2, 100, 2022
[56] Andrade, J., Stellar solutions with zero complexity obtained through a temporal metric deformation, Eur. Phys. J. C, 82, 3, 266, 2022
[57] Andrade, J.; Contreras, E., Stellar models with like-Tolman IV complexity factor, Eur. Phys. J. C, 81, 10, 889, 2021
[58] Maurya, S. K.; Gupta, Y. K.; Ray, S.; Chowdhury, S. R., Spherically symmetric charged compact stars, Eur. Phys. J. C, 75, 8, 389, 2015
[59] Israel, W., Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B, 44, 1, 1966
[60] Darmois, G., Les équations de la gravitation einsteinienne, Mémorial des Sciences Mathematiques, 1927, Gauthier-Villars: Gauthier-Villars Paris, Fasc. 25 · JFM 53.0816.03
[61] Hawking, S. W.; Ellis, G. F.R., The Large Scale Structure of Space-Time, 1973, Cambridge University Press: Cambridge University Press England · Zbl 0265.53054
[62] Olum, K. D., Superluminal travel requires negative energies, Phys. Rev. Lett., 81, 3567, 1998 · Zbl 0949.83008
[63] Visser, M.; Bassett, B.; Liberati, S., Superluminal censorship, Nuclear Phys. Proc. Suppl., 88, 267, 2000 · Zbl 1273.83125
[64] Schoen, R.; Yau, S. T., On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys., 65, 45, 1979 · Zbl 0405.53045
[65] Heintzmann, H.; Hillebrandt, W., Neutron stars with an anisotropic equation of state: Mass, redshift and stability, Astron. Astrophys., 38, 51, 1975
[66] Bondi, H., Anisotropic spheres in general relativity, Mon. Not. R. Astron. Soc., 259, 365, 1992
[67] Chan, R.; Herrera, L.; Santos, N. O., Dynamical instability in the collapse of anisotropic matter, Class. Quantum Gravity, 9, 133, 1992
[68] Chan, R.; Herrera, L.; Santos, N. O., Dynamical instability for radiating anisotropic collapse, Mon. Not. R. Astron. Soc., 265, 533, 1993
[69] Chandrasekhar, S., The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity, Astrophys. J., 140, 417, 1964 · Zbl 0151.47102
[70] Chandrasekhar, S., Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity, Phys. Rev. Lett., 12, 1143, 1964 · Zbl 0151.47102
[71] Moustakidis, Ch. C., The stability of relativistic stars and the role of the adiabatic index, Gen. Relativity Gravitation, 49, 68, 2017 · Zbl 1381.85003
[72] Herrera, L., Cracking of self-gravitating compact objects, Phys. Lett. A, 165, 206, 1992
[73] Abreu, H.; Hernández, H.; Núñez, L. A., Sound speeds, cracking and stability of self-gravitating anisotropic compact objects, Calss. Quantum Gravity, 24, 4631, 2007 · Zbl 1128.83023
[74] Buchdahl, H. A., General relativistic fluid spheres, Phys. Rev. D, 116, 1027, 1959 · Zbl 0092.20802
[75] Maurya, S. K.; Newton Singh, Ksh.; Dayanandan, B., Non-singular solution for anisotropic model by gravitational decoupling in the framework of complete geometric deformation (CGD), Eur. Phys. J. C, 80, 448, 2020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.