×

Role of complexity on the minimal deformation of black holes. (English) Zbl 07893952

Summary: We investigate spherically symmetric classes of anisotropic solutions within the realm of a schematic gravitational decoupling scheme, primarily decoupling through minimal geometric deformation, applied to non-rotating, ultra-compact, self-gravitational fluid distributions. In this respect, we employ the minimal complexity factor scheme to generate physically realistic models for anisotropic matter distributions, using a well-behaved model. The zero-complexity factor condition enables us to determine the deformation function for solving the decoupled system. We explore all the structure-defining scalar variables, such as density inhomogeneity, strong energy condition, density homogeneity, and the complexity factor (an alloy of density inhomogeneity and pressure anisotropy) for the decoupling constant ranging between 0 and 1. We observe that the anisotropy vanishes when the coupling constant is set to unity. This finding holds significance as it implies that, in the context of a zero-complexity factor approach, an anisotropic matter distribution becomes perfect without requiring any isotropy requirements. This work effectively explored the impact of complexity on the composition of self-gravitational stellar distributions. This effective approach enables the development of new, physically realistic isotropic stellar models for anisotropic matter distributions. Additionally, our findings indicate that the complexity factor in static, spherically symmetric self-gravitational objects can significantly affect the nature of the matter distribution within these systems. It is concluded that the minimally deformed Durgapal-IV model features an increasing pressure profile, and the local anisotropy of pressure vanishes throughout the model under complexity-free conditions.
{© 2024 IOP Publishing Ltd}

MSC:

83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

References:

[1] Schwarzschild, K., Sitzungsber. Preuss. Akad. Wiss. Berlin, (Math. Phys.), 7, 189, 1916
[2] Weyl, H., Phys. Z, 20, 65, 1919
[3] Tolman, R. C., Phys. Rev., 55, 364, 1939 · Zbl 0020.28407 · doi:10.1103/PhysRev.55.364
[4] Stuchlík, Z.; Hledik, S.; Novotnỳ, J., Phys. Rev. D, 94, 2016 · doi:10.1103/PhysRevD.94.103513
[5] Novotnỳ, J.; Hladik, J.; Stuchlík, Z., Phys. Rev. D, 95, 2017 · doi:10.1103/PhysRevD.95.043009
[6] Hod, S., Phys. Rev. D, 97, 2018 · doi:10.1103/PhysRevD.97.084018
[7] Hod, S., Eur. Phys. J. C, 78, 417, 2018 · doi:10.1140/epjc/s10052-018-5905-y
[8] Stuchlík, Z.; Schee, J.; Toshmatov, B.; Hladik, J.; Novotnỳ, J., J. Cosmol. Astropart. Phys., JCAP06(2017)056, 2017 · Zbl 1515.83084 · doi:10.1088/1475-7516/2017/06/056
[9] Lemaître, G., Ann. Soc. Sci. Brux. A, 53, 51, 1933 · Zbl 0007.33104
[10] Ruderman, M., Ann. Rev. Astron. Astrophys., 10, 427, 1972 · doi:10.1146/annurev.aa.10.090172.002235
[11] Bowers, R. L.; Liang, E., Astrophys. J., 188, 657, 1974 · doi:10.1086/152760
[12] Delgaty, M.; Lake, K., Comput. Phys. Commun., 115, 395, 1998 · Zbl 1002.83511 · doi:10.1016/S0010-4655(98)00130-1
[13] Herrera, L., Phys. Lett. A, 165, 206, 1992 · doi:10.1016/0375-9601(92)90036-L
[14] Herrera, L.; Santos, N. O., Phys. Rep., 286, 53, 1997 · doi:10.1016/S0370-1573(96)00042-7
[15] Mak, M.; Harko, T., Proc. R. Soc. A, 459, 393, 2003 · Zbl 1029.83023 · doi:10.1098/rspa.2002.1014
[16] Ivanov, B., Phys. Rev. D, 65, 2002 · doi:10.1103/PhysRevD.65.104001
[17] Schunck, F. E.; Mielke, E. W., Class. Quantum Grav., 20, R301, 2003 · Zbl 1050.83002 · doi:10.1088/0264-9381/20/20/201
[18] Usov, V. V., Phys. Rev. D, 70, 2004 · doi:10.1103/PhysRevD.70.067301
[19] Deb, D.; Khlopov, M.; Rahaman, F.; Ray, S.; Guha, B., Eur. Phys. J. C, 78, 465, 2018 · doi:10.1140/epjc/s10052-018-5930-x
[20] Rahaman, F.; Ray, S.; Jafry, A. K.; Chakraborty, K., Phys. Rev. D, 82, 2010 · doi:10.1103/PhysRevD.82.104055
[21] Varela, V.; Rahaman, F.; Ray, S.; Chakraborty, K.; Kalam, M., Phys. Rev. D, 82, 2010 · doi:10.1103/PhysRevD.82.044052
[22] Khan, S.; Adeel, A.; Yousaf, Z., Eur. Phys. J. C, 84, 572, 2024 · doi:10.1140/epjc/s10052-024-12940-1
[23] Yousaf, Z.; ul Haq Bhatti, M. Z.; Khan, S., Ann. Phys., 534, 2022 · Zbl 07770757 · doi:10.1002/andp.202200252
[24] Kippenhahn, R.; Weigert, A.; Weiss, A., Stellar Structure and Evolution, vol 192, 1990, Springer · Zbl 1254.85001
[25] Sawyer, R. F., Phys. Rev. Lett., 29, 382, 1972 · doi:10.1103/PhysRevLett.29.382
[26] Hartle, J. B.; Sawyer, R. F.; Scalapino, D. J., Astrophys. J., 199, 471, 1975 · doi:10.1086/153713
[27] Herrera, L., Phys. Rev. D, 97, 2018 · doi:10.1103/PhysRevD.97.044010
[28] Herrera, L.; Di Prisco, A.; Ospino, J., Phys. Rev. D, 98, 2018 · doi:10.1103/PhysRevD.98.104059
[29] Herrera, L.; Di Prisco, A.; Ospino, J., Phys. Rev. D, 99, 2019 · doi:10.1103/PhysRevD.99.044049
[30] Herrera, L.; Di Prisco, A.; Ospino, J., Eur. Phys. J. C, 80, 631, 2020 · doi:10.1140/epjc/s10052-020-8202-5
[31] Bhatti, M. Z.; Khlopov, M. Y.; Yousaf, Z.; Khan, S., Mon. Not. R. Astron. Soc., 506, 4543, 2021 · doi:10.1093/mnras/stab2062
[32] Bhatti, M. Z.; Yousaf, Z.; Khan, S., Eur. Phys. J. Plus, 136, 975, 2021 · doi:10.1140/epjp/s13360-021-01889-9
[33] Yousaf, Z.; Bhatti, M. Z.; Khan, S.; Sahoo, P. K., Phys. Dark Univ., 36, 2022 · doi:10.1016/j.dark.2022.101015
[34] Yousaf, Z.; Khan, S.; Turki, N. B.; Suzuki, T., Chin. J. Phys., 89, 1595, 2024 · doi:10.1016/j.cjph.2024.04.012
[35] Herrera, L.; Di Prisco, A.; Ospino, J., Phys. Rev. D, 103, 2021 · doi:10.1103/PhysRevD.103.024037
[36] Yousaf, Z.; Bamba, K.; Bhatti, M.; Farwa, U., 2023
[37] Casadio, R.; Ovalle, J.; Da Rocha, R., Class. Quantum Grav., 32, 2015 · Zbl 1329.83107 · doi:10.1088/0264-9381/32/21/215020
[38] Ovalle, J., vol 41, 2016, World Scientific
[39] Ovalle, J., Int. J. Mod. Phys. D, 18, 837, 2009 · Zbl 1186.83038 · doi:10.1142/S0218271809014790
[40] Ovalle, J., Mod. Phys. Lett. A, 25, 3323, 2010 · Zbl 1208.83128 · doi:10.1142/S0217732310034420
[41] Casadio, R.; Ovalle, J., Phys. Lett. B, 715, 251, 2012 · doi:10.1016/j.physletb.2012.07.041
[42] Ovalle, J.; Linares, F., Phys. Rev. D, 88, 2013 · doi:10.1103/PhysRevD.88.104026
[43] Casadio, R.; Ovalle, J.; Da Rocha, R., Class. Quantum Grav., 31, 2014 · Zbl 1286.83092 · doi:10.1088/0264-9381/31/4/045016
[44] Ovalle, J.; Gergely, L. A.; Casadio, R., Class. Quantum Grav., 32, 2015 · Zbl 1308.83150 · doi:10.1088/0264-9381/32/4/045015
[45] da Rocha, R., Eur. Phys. J. C, 77, 355, 2017 · doi:10.1140/epjc/s10052-017-4926-2
[46] Casadio, R.; Nicolini, P.; Da Rocha, R., Class. Quantum Grav., 35, 2018 · Zbl 1409.83088 · doi:10.1088/1361-6382/aad664
[47] Ovalle, J., Phys. Rev. D, 95, 2017 · doi:10.1103/PhysRevD.95.104019
[48] Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A., Eur. Phys. J. C, 78, 122, 2018 · doi:10.1140/epjc/s10052-018-5606-6
[49] Khan, S.; Yousaf, Z., Phys. Scr., 99, 2024 · doi:10.1088/1402-4896/ad38e2
[50] Abellán, G.; Torres-Sánchez, V.; Fuenmayor, E.; Contreras, E., Eur. Phys. J. C, 80, 177, 2020 · doi:10.1140/epjc/s10052-020-7749-5
[51] Albalahi, A. M.; Bhatti, M. Z.; Ali, A.; Khan, S., Eur. Phys. J. C, 84, 293, 2024 · doi:10.1140/epjc/s10052-024-12652-6
[52] Albalahi, A. M.; Yousaf, Z.; Ali, A.; Khan, S., Eur. Phys. J. C, 84, 9, 2024 · doi:10.1140/epjc/s10052-023-12358-1
[53] Tello-Ortiz, F.; Maurya, S.; Gomez-Leyton, Y., Eur. Phys. J. C, 80, 324, 2020 · doi:10.1140/epjc/s10052-020-7882-1
[54] Durgapal, M.; Fuloria, R., Gen. Relativ. Gravit., 17, 671, 1985 · doi:10.1007/BF00763028
[55] Tolman, R. C., Phys. Rev., 35, 875, 1930 · JFM 56.0743.05 · doi:10.1103/PhysRev.35.875
[56] Herrera, L.; Ospino, J.; Di Prisco, A.; Fuenmayor, E.; Troconis, O., Phys. Rev. D, 79, 2009 · doi:10.1103/PhysRevD.79.064025
[57] Herrera, L.; Di Prisco, A.; Ibanez, J., Phys. Rev. D, 84, 2011 · doi:10.1103/PhysRevD.84.107501
[58] Karmarkar, K., Proc. Indian Acad. Sci. A, 27, 56, 1948 · doi:10.1007/BF03173443
[59] Pandey, S.; Sharma, S., Gen. Relativ. Gravit., 14, 113, 1982 · Zbl 0486.53047 · doi:10.1007/BF00756917
[60] Lake, K., Phys. Rev. D, 67, 2003 · doi:10.1103/PhysRevD.67.104015
[61] Vaidya, P.; Tikekar, R., J. Astrophys. Astron., 3, 325, 1982 · doi:10.1007/BF02714870
[62] Contreras, E.; Fuenmayor, E.; Abellán, G., Eur. Phys. J. C, 82, 187, 2022 · doi:10.1140/epjc/s10052-022-10154-x
[63] Andrade, J.; Contreras, E., Eur. Phys. J. C, 81, 889, 2021 · doi:10.1140/epjc/s10052-021-09695-4
[64] Das, B.; Dey, S.; Das, S.; Paul, B. C., Eur. Phys. J. C, 82, 519, 2022 · doi:10.1140/epjc/s10052-022-10483-x
[65] Maurya, S.; Errehymy, A.; Jasim, M.; Hansraj, S.; Al-Harbi, N.; Abdel-Aty, A-H, Eur. Phys. J. C, 82, 1173, 2022 · doi:10.1140/epjc/s10052-022-11139-6
[66] Heydarzade, Y.; Misyura, M.; Vertogradov, V., Hairy Kiselev black hole solutions, Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.044073
[67] Vertogradov, V.; Misyura, M., Vaidya and generalized Vaidya solutions by gravitational decoupling, Universe, 8, 567, 2022 · doi:10.3390/universe8110567
[68] Vertogradov, V.; Övgün, A., Analyzing the influence of geometrical deformation on photon sphere and shadow radius: A new analytical approach—Spherically symmetric spacetimes, Phys. Dark Universe, 45, 2024 · doi:10.1016/j.dark.2024.101541
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.