×

Role of decoupling measure on the complexity factor and isotropization of the charged anisotropic spheres. (English) Zbl 1543.83036

Summary: An electromagnetic field is a consequential aspect of the space carried by moving electric charges. The contemporaneous interaction of Einstein-Maxwell fields could be provoked by the dispersing electro-magnetic waves owing to the warping of the spacetime. Within the complete geometric deformation scenario, the current work is devoted to exploring the substantial impact of an electromagnetic field on the anisotropic spherically symmetric structures that are taken to be the seed source, and then augmenting to the additional source. In this case, the gravitational decoupling strategy and embedding Class-I constraint will be used as two techniques to address the issue. We compute the Einstein-Maxwell field equations for the desired configuration. The transformed metric potentials corresponding to the temporal and radial components are then applied to formulate the two distinct sets of field equations. Through the Kuchowicz ansatz for the seed metric potential, we enforce the Karmarkar constraint to grasp the entire gravitational aspect of a static compact sphere together with the effects of charged anisotropic pressure. The uniqueness of our study is that we used isotropization and disappearing complexity requirements to derive the deformation function within the bounds of a charged scenario. Thereby, two solutions to the associated relativistic equations are then presented for physical validity. We address the fact that the existence of charged pressure anisotropy in the bounded sphere has a consequential influence on governing its stability. Furthermore, it is identified that the decoupling-constant magnitude controls the energy flow within both the generically charged fluid and the fluid matter composition.

MSC:

83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83C22 Einstein-Maxwell equations
83C50 Electromagnetic fields in general relativity and gravitational theory
Full Text: DOI

References:

[1] Maurya, S. K.; Gupta, Y. K., Charged fluid to anisotropic fluid distribution in general relativity, Astrophys. Space Sci., 344, 243, 2013 · Zbl 1276.85010
[2] Maurya, S. K.; Gupta, Y. K.; Ray, S.; Dayanandan, B., Anisotropic models for compact stars, Eur. Phys. J. C, 75, 225, 2015
[3] Bhar, P.; Maurya, S. K.; Gupta, Y. K.; Manna, T., Modelling of anisotropic compact stars of embedding class one, Eur. Phys. J. A, 52, 312, 2016
[4] Ivanov, B. V., Analytical study of anisotropic compact star models, Eur. Phys. J. C, 77, 738, 2017
[5] Kumar, J.; Bharti, P., Relativistic models for anisotropic compact stars: A review, Astron. Rev., Article 101662 pp., 2022
[6] Schwarzschild, K., On the gravitational field of a point-mass according to Einstein theory, Kl. Math. Phys., 424, 1916
[7] Schunck, F. E.; Mielke, E. W., General relativistic boson stars, Classical Quantum Gravity, 20, R301, 2003 · Zbl 1050.83002
[8] Tripathy, S. K.; Mishra, B., Anisotropic solutions in \(f ( R )\) gravity, Eur. Phys. J. Plus, 131, 273, 2016
[9] Yousaf, Z.; Bhatti, M. Z.; Farwa, U., Evolution of axially and reflection symmetric source in energy-momentum squared gravity, Eur. Phys. J. Plus, 137, 49, 2022
[10] Yousaf, Z.; Bhatti, M. Z.; Farwa, U., Quasi-static approximation in the study of compact stars, Chin. J. Phys., 77, 2014, 2022 · Zbl 1484.83086
[11] Yousaf, Z.; Bhatti, M. Z.; Asad, H., Gravastars in \(f ( R , T , R_{\mu \nu} T^{\mu \nu} )\), Phys. Dark Universe, 28, Article 100527 pp., 2020
[12] Yousaf, Z.; Bhatti, M. Z.; Farwa, U., Dissipative collapse of cosmic structures in modified gravity, Chinese J. Phys., 78, 363, 2022 · Zbl 1539.83118
[13] Das, B.; Ray, P. C.; Radinschi, I.; Rahaman, F.; Ray, S., Isotropic cases of static charged fluid spheres in general relativity, Internat. J. Modern Phys. D, 20, 1675, 2011 · Zbl 1263.83041
[14] Herrera, L.; Di Prisco, A.; Ibáñez, J., Role of electric charge and cosmological constant in structure scalars, Phys. Rev. D, 84, Article 107501 pp., 2011
[15] Paul, B. C.; Deb, R., Relativistic solutions of anisotropic compact objects, Astrophys. Space Sci., 354, 421, 2014
[16] Murad, M. H., Some analytical models of anisotropic strange stars, Astrophys. Space Sci., 361, 20, 2016
[17] Bhatti, M. Z.; Yousaf, Z., Stability of anisotropic stellar filaments, Ann. Physics, 387, 253-270, 2017 · Zbl 1377.85009
[18] Yousaf, Z.; Khlopov, M. Y.; Bhatti, M. Z.; Naseer, T., Influence of modification of gravity on the complexity factor of static spherical structures, Mon. Not. R. Astron. Soc., 495, 4334-4346, 2020
[19] Mustafa, G.; Hassan, Z.; Moraes, P. H.R. S.; Sahoo, P. K., Wormhole solutions in symmetric teleparallel gravity, Phys. Lett. B, 821, Article 136612 pp., 2021 · Zbl 07414604
[20] Herrera, L.; Barreto, W., Newtonian polytropes for anisotropic matter: General framework and applications, Phys. Rev. D, 87, Article 087303 pp., 2013
[21] Herrera, L.; Di Prisco, A.; Barreto, W.; Ospino, J., Conformally flat polytropes for anisotropic matter, Gen. Relativity Gravitation, 46, 1827, 2014 · Zbl 1308.83041
[22] Ovalle, J., Searching exact solutions for compact stars in braneworld: a conjecture, Modern Phys. Lett. A, 23, 3247, 2008 · Zbl 1165.83352
[23] Ovalle, J., Decoupling gravitational sources in general relativity: from perfect to anisotropic fluids, Phys. Rev. D, 95, Article 104019 pp., 2017
[24] Gabbanelli, L.; Rincón, Á.; Rubio, C., Gravitational decoupled anisotropies in compact stars, Eur. Phys. J. C, 78, 370, 2018
[25] Leon, P.; Las Heras, C., Spherically symmetric distributions with an invariant and vanishing complexity factor by means of the extended geometric deformation, Eur. Phys. J. C, 83, 260, 2023
[26] Casadio, R.; Ovalle, J.; Da Rocha, R., The minimal geometric deformation approach extended, Classical Quantum Gravity, 32, Article 215020 pp., 2015 · Zbl 1329.83107
[27] Ovalle, J., Decoupling gravitational sources in general relativity: The extended case, Phys. Lett. B, 788, 213, 2019 · Zbl 1405.83006
[28] Singh, K. N.; Maurya, S. K.; Jasim, M. K.; Rahaman, F., Minimally deformed anisotropic model of class one space-time by gravitational decoupling, Eur. Phys. J. C, 79, 851, 2019
[29] Casadio, R.; Contreras, E.; Ovalle, J.; Sotomayor, A.; Stuchlik, Z., Isotropization and change of complexity by gravitational decoupling, Eur. Phys. J. C, 79, 826, 2019
[30] Pant, N.; Gedela, S.; Ray, S.; Sagar, K. G., Relativistic charged stellar model of the pant interior solution via gravitational decoupling and karmarkar conditions, Modern Phys. Lett. A, 37, Article 2250072 pp., 2022
[31] Maurya, S. K.; Pradhan, A.; Tello-Ortiz, F.; Banerjee, A.; Nag, R., Minimally deformed anisotropic stars by gravitational decoupling in Einstein-Gauss-Bonnet gravity, Eur. Phys. J. C, 81, 848, 2021
[32] Contreras, E.; Bargueño, P., Extended gravitational decoupling in 2+1 dimensional space-times, Classical Quantum Gravity, 36, Article 215009 pp., 2019 · Zbl 1478.83142
[33] Maurya, S. K.; Singh, K. N.; Dayanandan, B., Non-singular solution for anisotropic model by gravitational decoupling in the framework of complete geometric deformation (CGD), Eur. Phys. J. C, 80, 448, 2020
[34] Sanudo, J.; Pacheco, A. F., Complexity and white-dwarf structure, Phys. Lett. A, 373, 807, 2009 · Zbl 1228.85003
[35] De Avellar, M. G.B.; Horvath, J. E., Entropy, complexity and disequilibrium in compact stars, Phys. Lett. A, 376, 1085, 2012 · Zbl 1255.85014
[36] Herrera, L., New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case, Phys. Rev. D, 97, Article 044010 pp., 2018
[37] Herrera, L.; Di Prisco, A.; Ospino, J., Definition of complexity for dynamical spherically symmetric dissipative self-gravitating fluid distributions, Phys. Rev. D, 98, Article 104059 pp., 2018
[38] Herrera, L.; Di Prisco, A.; Ospino, J., Complexity factors for axially symmetric static sources, Phys. Rev. D, 99, Article 044049 pp., 2019
[39] Herrera, L.; Di Prisco, A.; Ospino, J., Hyperbolically symmetric static fluids: A general study, Phys. Rev. D, 103, Article 024037 pp., 2021
[40] Contreras, E.; Ovalle, J.; Casadio, R., Gravitational cracking and complexity in the framework of gravitational decoupling, Phys. Rev. D, 103, Article 044020 pp., 2021
[41] Bhatti, M. Z.; Yousaf, Z.; Hanif, S., A novel definition of complexity in torsion based theory, Eur. Phys. J. C, 82, 714, 2022
[42] Asad, H.; Yousaf, Z., Study of anisotropic fluid distributed hyperbolically in \(f ( R , T , Q )\) gravity, Universe, 8, 630, 2022
[43] Farwa, U.; Yousaf, Z.; Bhatti, M. Z., A measure of complexity for axial self-gravitating static fluids, Phys. Scr., 97, Article 105307 pp., 2022
[44] Maurya, S. K.; Govender, M.; Mustafa, G.; Nag, R., Relativistic models for vanishing complexity factor and isotropic star in embedding class I spacetime using extended geometric deformation approach, Eur. Phys. J. C, 82, 1006, 2022
[45] Yousaf, Z.; Bhatti, M. Z.; Farwa, U., Complexity factor of static axial complex structures in \(f ( R , T )\) gravity, Symmetry, 15, 531, 2023 · Zbl 1543.83045
[46] Yousaf, Z.; Bhatti, M. Z.; Farwa, U., Role of strong matter-field coupling on axial complex systems, Fortschr. Phys., Article 2300013 pp., 2023 · Zbl 1543.83045
[47] Momeni, D.; Myrzakulov, R., Tolman-Oppenheimer-Volkoff equations in nonlocal \(f ( R )\) gravity, Int. J. Geom. Methods Mod. Phys., 12, Article 1550014 pp., 2015 · Zbl 1311.83045
[48] Ilyas, M., Charged compact stars in \(f ( G )\) gravity, Eur. Phys. J. C, 78, 757, 2018
[49] Yousaf, Z.; Sharif, M.; Ilyas, M.; Bhatti, M. Z., Influence of \(f ( R )\) models on the existence of anisotropic self-gravitating systems, Eur. Phys. J. C, 77, 691, 2017
[50] Contreras, E.; Rincón, Á.; Bargueño, P., A general interior anisotropic solution for a BTZ vacuum in the context of the minimal geometric deformation decoupling approach, Eur. Phys. J. C, 79, 216, 2019
[51] Maurya, S. K.; Tello-Ortiz, F., Decoupling gravitational sources by MGD approach in rastall gravity, Phys. Dark Universe, 29, Article 100577 pp., 2020
[52] Tello-Ortiz, F.; Rincón, Á.; Bhar, P.; Gomez-Leyton, Y., Durgapal IV model considering the minimal geometric deformation approach, Chin. Phys. C, 44, Article 105102 pp., 2020
[53] Maurya, S. K.; Errehymy, A.; Singh, K. N.; Tello-Ortiz, F.; Daoud, M., Gravitational decoupling minimal geometric deformation model in modified \(f ( R , T )\) gravity theory, Phys. Dark Universe, 30, Article 100640 pp., 2020
[54] Bhatti, M. Z.; Yousaf, M.; Yousaf, Z., Novel junction conditions in \(f ( G , T )\) modified gravity, Gen. Relativity Gravitation, 55, 16, 2023 · Zbl 1528.83022
[55] Maurya, S. K.; Nag, R., Role of complexity on self-gravitating compact star by gravitational decoupling, Eur. Phys. J. C, 82, 48, 2022 · Zbl 1543.85002
[56] Tolman, R. C., On the use of the energy-momentum principle in general relativity, Phys. Rev., 35, 875, 1930 · JFM 56.0743.05
[57] Karmarkar, K., Gravitational metrics of spherical symmetry and class one, (Proc. Indian Acad. Sci. A, Vol. 27, 1948, Springer), 56
[58] Maurya, S. K.; Maharaj, S. D., Anisotropic fluid spheres of embedding class one using Karmarkar condition, Eur. Phys. J. C, 77, 328, 2017
[59] Singh, K. N.; Pant, N., A family of well-behaved Karmarkar spacetimes describing interior of relativistic stars, Eur. Phys. J. C, 76, 524, 2016
[60] Maurya, S. K.; Gupta, Y. K.; Ray, S.; Deb, D., Generalised model for anisotropic compact stars, Eur. Phys. J. C, 76, 693, 2016
[61] Maurya, S. K., A completely deformed anisotropic class one solution for charged compact star: a gravitational decoupling approach, Eur. Phys. J. C, 79, 958, 2019
[62] Tello-Ortiz, F.; Maurya, S.; Errehymy, A.; Singh, K. N.; Daoud, M., Anisotropic relativistic fluid spheres: an embedding class I approach, Eur. Phys. J. C, 79, 885, 2019
[63] Singh, K. N.; Bisht, R. K.; Maurya, S. K.; Pant, N., Static fluid spheres admitting Karmarkar condition, Chin. Phys. C, 44, Article 035101 pp., 2020
[64] Mondal, M.; Rahaman, F., Tolman VI fluid sphere in \(f ( R , T )\) gravity, Universe, 9, 122, 2023
[65] Maurya, S. K.; Gupta, Y. K.; Ray, S.; Chowdhury, S. R., Spherically symmetric charged compact stars, Eur. Phys. J. C, 75, 389, 2015
[66] Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.; Ray, S., A new exact anisotropic solution of embedding class one, Eur. Phys. J. C, 76, 266, 2016
[67] Herrera, L.; Santos, N. O., Local anisotropy in self-gravitating systems, Phys. Rep., 286, 53, 1997
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.