×

Singularity-free anisotropic compact star in \(f(R, \phi)\) gravity via Karmarkar condition. (English) Zbl 1537.83124

Summary: In this paper, we explore some emerging properties of the stellar objects in the frame of the \(f(R, \phi)\) gravity by employing the well-known Karmarkar condition, where \(R\) and \(\phi\) represent the Ricci scalar and scalar potential, respectively. We demonstrate the embedded class-I technique by using the static spherically symmetric line element along with anisotropic fluid matter distribution. Furthermore, to achieve our goal, we take a specific expression of metric potential \(g_{rr}\), already presented in the literature, and proceed by using the Karmarkar condition to obtain the second metric potential. To get the value of unknown parameters of the compact structures, we compare the Krori-Barua spacetime with spherically symmetric spacetime. Moreover, we examine the physical attributes of compact objects by presuming three viable \(f(R, \phi)\) models. We analyze the graphical behavior of density and pressure, the Tolman-Oppenheimer-Volkoff equation, energy conditions, mass function, surface redshift, and adiabatic index. It is recognized that all the obtained results deliver emphatic evidence for the stability of our considered realistic stars.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI

References:

[1] Buchdahl, H. A., Non-linear Lagrangians and cosmological theory, Mon. Not. R. Astron. Soc.150 (1970) 1-8.
[2] Nojiri, S. and Odintsov, S. D., Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models, Phys. Rep.505 (2011) 59-144.
[3] Nojiri, S., Odintsov, S. D. and Oikonomou, V. K., Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Phys. Rep.692 (2017) 1-104. · Zbl 1370.83084
[4] Nojiri, S. and Odintsov, S. D., Modified GaussBonnet theory as gravitational alternative for dark energy, Phys. Lett. B631 (2005) 1-6. · Zbl 1247.83292
[5] Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S. D. and Zerbini, S., Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem, Phys. Rev. D73 (2006) 084007.
[6] Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S. D. and Zerbini, S., String-inspired Gauss-Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy, Phys. Rev. D75 (2007) 086002.
[7] Yousaf, Z.et al., Stability of anisotropy pressure in self-gravitational systems in \(f(G)\) Gravity, Axioms12 (2023) 257.
[8] Malik, A.et al., A study of cylindrically symmetric solutions in \(f(R,\phi,X)\) theory of gravity, Eur. Phys. J. C82 (2022) 166.
[9] Hashim, M., El Hanafy, W., Golovnev, A. and El-Zant, A. A., Toward a concordance teleparallel cosmology. Part I. Background dynamics, J. Cosmol. Astropart. Phys.07 (2021) 052. · Zbl 1485.83026
[10] Nashed, G. G. L. and Capozziello, S., Charged spherically symmetric black holes in \(f(R)\) gravity and their stability analysis, Phys. Rev.10 (2019) 104018.
[11] Nashed, G. G. L., Energy and momentum of a spherically symmetric dilaton frame as regularized by teleparallel gravity, Ann. Phys.523 (2011) 450-458. · Zbl 1218.83029
[12] Wanas, M. I. and Hassan, H. A., Torsion and particle horizons, Int. J. Theor. Phys.53 (2014) 3901-3909. · Zbl 1305.83067
[13] Nashed, G. G. L. and Capozziello, S., Stable and self-consistent compact star models in teleparallel gravity, Eur. Phys. J. C80 (2020) 1-18.
[14] W. El Hanafy and G. G. L. Nashed, The hidden flat like universe: Starobinsky-like inflation induced by \(f(T)\) gravity, preprint (2014), arXiv:1409.7199.
[15] Malik, A., Analysis of charged compact stars in modified \(f(R,\phi)\) theory of gravity, New Astron.93 (2022) 101765.
[16] Nashed, G. G. L. and Saridakis, E. N., Rotating AdS black holes in Maxwell-\(f(T)\) gravity, Class. Quantum Grav.36 (2019) 135005. · Zbl 1477.83060
[17] El Hanafy, W. and Nashed, G. G. L., Reconstruction of \(f(T)\)-gravity in the absence of matter, Astrophys. Space Sci.361 (2016) 197.
[18] Nashed, G. G. L. and Saridakis, E. N., Stability of motion and thermodynamics in charged black holes in \(f(T)\) gravity, J. Cosmol. Astropart. Phys.05 (2022) 017. · Zbl 1505.83020
[19] Nashed, G. G. L. and El Hanafy, W., Analytic rotating black-hole solutions in N-dimensional f(T) gravity, Eur. Phys. J. C77 (2017) 1-9.
[20] Nashed, G. G. L., KerrNewman solution and energy in teleparallel equivalent of einstein theory, Mod. Phys. Lett. A22 (2007) 1047-1056. · Zbl 1138.83314
[21] Nashed, G. G. L., Rotating charged black hole spacetimes in quadratic \(f(R)\) gravitational theories, Int. J. Mod. Phys. D27 (2018) 1850074. · Zbl 1430.83077
[22] Capozziello, S., Curvature quintessence, Int. J. Mod. Phys. D11 (2002) 483-491. · Zbl 1062.83565
[23] Nashed, G. G. L., ReissnerNordstrm solutions and energy in teleparallel theory, Mod. Phys. Lett. A21 (2006) 2241-2250. · Zbl 1119.83008
[24] Nashed, G. G. L. and Capozziello, S., Anisotropic compact stars in \(f(R)\) gravity, Eur. Phys. J. C81 (2021) 481.
[25] Naz, T.et al., Embedded class-I solution of compact stars in \(f(R)\) gravity with Karmarkar condition, Ann. Phys.429 (2021) 168491. · Zbl 1464.85001
[26] Nashed, G. G. L., Brane world black holes in teleparallel theory equivalent to general relativity and their Killing vectors, energy, momentum and angular momentum, Chin. Phys. B19 (2010) 020401.
[27] Nashed, G. G. L., Spherically symmetric charged black holes in \(f(R)\) gravitational theories, Eur. Phys. J. Plus133 (2018) 1-11.
[28] Nashed, G. G. L., Higher dimensional charged black hole solutions in \(f(R)\) gravitational theories, Adv. High Energy Phys.2018 (2018) 7323574. · Zbl 1396.83019
[29] Nashed, G. G. L., El Hanafy, W., Odintsov, S. D. and Oikonomou, V. K., Thermodynamical correspondence of \(f(R)\) gravity in the Jordan and Einstein frames, Int. J. Mod. Phys. D29 (2020) 2050090.
[30] Nashed, G. G. L., Charged axially symmetric solution and energy in teleparallel theory equivalent to general relativity, Eur. Phys. J. C49 (2007) 851-857. · Zbl 1191.83016
[31] Elizalde, E., Nashed, G. G. L., Nojiri, S. and Odintsov, S. D., Spherically symmetric black holes with electric and magnetic charge in extended gravity: Physical properties, causal structure, and stability analysis in Einsteins and Jordans frames, Eur. Phys. J. C80 (2020) 109.
[32] Nashed, G. G. L., El Hanafy, W. and Bamba, K., Charged rotating black holes coupled with nonlinear electrodynamics Maxwell field in the mimetic gravity, J. Cosmol. Astropart. Phys.01 (2019) 058. · Zbl 1542.83029
[33] Nashed, G. L., Charged dilaton, energy, momentum and angular-momentum in teleparallel theory equivalent to general relativity, Eur. Phys. J. C54 (2008) 291-302. · Zbl 1189.83022
[34] Capozziello, S.et al., Mass-radius relation for neutron stars in \(f(R)\) gravity, Phys. Rev. D93 (2016) 023501.
[35] Astashenok, A. V.et al., Extreme neutron stars from Extended Theories of Gravity, J. Cosmol. Astropart. Phys.1501 (2015) 001.
[36] Astashenok, A. V.et al., Maximum baryon masses for static neutron stars in \(f(R)\) gravity, Europhys. Lett.136 (2022) 59001.
[37] Nashed, G. G. L. and Capozziello, S., Anisotropic compact stars in f(R) gravity, Eur. Phys. J. C81 (2021) 481.
[38] Astashenok, A. V.et al., Magnetic neutron stars in \(f(R)\) gravity, Astrophys. Space Sci.355 (2015) 333-341.
[39] Karmarkar, K. R.Gravitational metrics of spherical symmetry and class one, Proc. Indian Acad. Sci. A27 (1948) 56.
[40] Bhar, P.et al., A comparative study on generalized model of anisotropic compact star satisfying the Karmarkar condition, Eur. Phys. J. C77 (2017) 596.
[41] Mustafa, G.et al., Physically viable solutions of anisotropic spheres in \(f(R,G)\) gravity satisfying the Karmarkar condition, Phys. Rev. D101 (2020) 104013.
[42] Maurya, S. K.et al., A new model for spherically symmetric charged compact stars of embedding class 1, Eur. Phys. J. C77 (2016) 1-12.
[43] Abbas, G.et al., Quintessence compact stars satisfying Karmarkar condition, Can. J. Phys.97 (2019) 374-381.
[44] Naz, T.et al., Embedded class-I solution of compact stars in \(f(R)\) gravity with Karmarkar condition, Ann. Phys.429 (2021) 168491. · Zbl 1464.85001
[45] Maurya, S. K.et al., Generalised model for anisotropic compact stars, Eur. Phys. J. C76 (2016) 1-12.
[46] Bhar, P., Modelling a new class of anisotropic compact stars satisfying the karmakars condition, Eur. Phys. J. Plus132 (2017) 1-12.
[47] Sharif, M. and Saba, S., Embedding class-1 anisotropic solution in \(f(G)\) gravity, Chin. J. Phys.64 (2020) 374-389. · Zbl 07830277
[48] Upreti, J.et al., Relativistic parametric embedding class I solutions of cold stars in Karmarkar space-time continuum, New Astron.80 (2020) 101403.
[49] Bhar, P.et al., A new class of relativistic model of compact stars of embedding class I, Int. J. Mod. Phys. D26 (2017) 1750090. · Zbl 1371.85005
[50] Ahmad, M.et al., A comparative analysis of self-consistent charged anisotropic spheres, Int. J. Mod. Phys. A36 (2021) 2150203.
[51] Singh, K. N. and Pant, N., A family of well-behaved Karmarkar spacetimes describing interior of relativistic stars, Eur. Phys. J. C76 (2016) 1-9.
[52] Waheed, S.et al., Physically acceptable embedded class-I compact stars in modified gravity with Karmarkar condition, Symmetry12 (2020) 962.
[53] Asghar, Z., et al., Study of embedded class-I uid spheres in \(f(R,T)\) gravity with Karmarkar condition, Chin. J. Phys.83 (2023) 427-437. · Zbl 1537.83101
[54] Shamir, M. F.et al., Wormhole solutions in modified \(f(R,\phi,X)\) gravity, Int. J. Mod. Phys. A36 (2021) 2150021.
[55] Shamir, M. F. and Malik, A., Behavior of anisotropic compact stars in \(f(R,\phi)\) gravity, Commun. Theor. Phys.71 (2019) 599. · Zbl 1452.83028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.