×

Symbolic computation of conservation laws for nonlinear partial differential equations in multiple space dimensions. (English) Zbl 1234.35071

Summary: A method for symbolically computing conservation laws of nonlinear partial differential equations (PDEs) in multiple space dimensions is presented in the language of variational calculus and linear algebra. The steps of the method are illustrated using the Zakharov-Kuznetsov and Kadomtsev-Petviashvili equations as examples.The method is algorithmic and has been implemented in Mathematica. The software package, ConservationLawsMD.m, can be used to symbolically compute and test conservation laws for polynomial PDEs that can be written as nonlinear evolution equations. The code ConservationLawsMD.m has been applied to multi-dimensional versions of the Sawada-Kotera, Camassa-Holm, Gardner, and Khokhlov-Zabolotskaya equations.

MSC:

35G20 Nonlinear higher-order PDEs
68W30 Symbolic computation and algebraic computation
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0762.35001
[2] Ablowitz, M. A.; Segur, H., Solitons and the Inverse Scattering Transform, (SIAM Stud. in Appl. Math., vol. 4 (1981), SIAM: SIAM Philadelphia, Pennsylvania) · Zbl 0299.35076
[3] Anderson, I.M., 2004a. The Variational Complex. Dept. of Mathematics, Utah State University, Logan, Utah, 318 pages. Manuscript available at http://www.math.usu.edu/ fg_mp/Publications/VB/vb.pdf; Anderson, I.M., 2004a. The Variational Complex. Dept. of Mathematics, Utah State University, Logan, Utah, 318 pages. Manuscript available at http://www.math.usu.edu/ fg_mp/Publications/VB/vb.pdf
[4] Anderson, I.M., 2004b. The Vessiot package; the software with documentation is available at http://www.math.usu.edu/ fg_mp/Pages/SymbolicsPage/VessiotDownloads.html; Anderson, I.M., 2004b. The Vessiot package; the software with documentation is available at http://www.math.usu.edu/ fg_mp/Pages/SymbolicsPage/VessiotDownloads.html
[5] Anderson, I.M., Cheb-Terrab, E., 2009. DifferentialGeometry package, Maple Online Help, www.maplesoft.com/support/help/Maple/view.aspx?path=DifferentialGeometry; Anderson, I.M., Cheb-Terrab, E., 2009. DifferentialGeometry package, Maple Online Help, www.maplesoft.com/support/help/Maple/view.aspx?path=DifferentialGeometry
[6] Baldwin, D.; Hereman, W., A symbolic algorithm for computing recursion operators of nonlinear PDEs, Int. J. Comput. Math., 87, 1094-1119 (2010) · Zbl 1191.65166
[7] Bluman, G. W.; Cheviakov, A. F.; Anco, S. C., (Applications of Symmetry Methods to Partial Differential Equations. Applications of Symmetry Methods to Partial Differential Equations, Appl. Math. Sciences, vol. 168 (2010), Springer-Verlag: Springer-Verlag New York) · Zbl 1223.35001
[8] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solutions, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521
[9] Cheb-Terrab, E., von Bulow, K., 2004. PDEtools package, Maple Online Help, http://www.maplesoft.com/support/help/Maple/view.aspx?path=PDEtools; Cheb-Terrab, E., von Bulow, K., 2004. PDEtools package, Maple Online Help, http://www.maplesoft.com/support/help/Maple/view.aspx?path=PDEtools
[10] Cheviakov, A. F., GeM software package for computation of symmetries and conservation laws of differential equations, Comput. Phys. Comm., 76, 48-61 (2007) · Zbl 1196.34045
[11] Cheviakov, A. F., Computation of fluxes of conservation laws, J. Engrg. Math., 66, 153-173 (2010) · Zbl 1193.65155
[12] Deconinck, B.; Nivala, M., Symbolic integration and summation using homotopy operators, Math. Comput. Simulation, 80, 825-836 (2009) · Zbl 1182.65044
[13] Drinfel’d, V. G.; Sokolov, V. V., Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math., 30, 1975-2036 (1985) · Zbl 0578.58040
[14] Göktaş, Ü.; Hereman, W., Symbolic computation of conserved densities for systems of nonlinear evolution equations, J. Symbolic Comput., 24, 591-621 (1997) · Zbl 0891.65129
[15] Gordoa, P. G.; Pickering, A.; Senthilvelan, M., Evidence for the nonintegrability of a water wave equation in 2+1 dimensions, Zeit. für Naturfor., 59a, 640-644 (2004)
[16] Hereman, W., Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions, Int. J. Quantum Chem., 106, 278-299 (2006) · Zbl 1188.68364
[17] Hereman, W.; Adams, P. J.; Eklund, H. L.; Hickman, M. S.; Herbst, B. M., Direct methods and symbolic software for conservation laws of nonlinear equations, (Yan, Z., Advances in Nonlinear Waves and Symbolic Computation (2009), Nova Science Publishers: Nova Science Publishers New York), 19-79 · Zbl 1210.35164
[18] Hereman, W.; Colagrosso, M.; Sayers, R.; Ringler, A.; Deconinck, B.; Nivala, M.; Hickman, M. S., Continuous and discrete homotopy operators and the computation of conservation laws, (Wang, D.; Zheng, Z., Differential Equations with Symbolic Computation (2005), Birkhäuser: Birkhäuser Basel), 249-285
[19] Hereman, W.; Deconinck, B.; Poole, L. D., Continuous and discrete homotopy operators: a theoretical approach made concrete, Math. Comput. Simulation, 74, 352-360 (2007) · Zbl 1120.65073
[20] Infeld, E., Self-focusing nonlinear waves, J. Plasma Phys., 33, 171-182 (1985)
[21] Johnson, R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455, 63-82 (2002) · Zbl 1037.76006
[22] Kadomtsev, B. B.; Petviashvili, V. I., On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15, 539-541 (1970) · Zbl 0217.25004
[23] Konopelchenko, B. G.; Dubrovsky, V. G., Some new integrable nonlinear evolution equations in 2+1 dimensions, Phys. Lett. A, 102, 15-17 (1984) · Zbl 0552.35074
[24] Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math., 21, 467-490 (1968) · Zbl 0162.41103
[25] Miura, R. M.; Gardner, C. S.; Kruskal, M. D., Korteweg-de Vries equation and generalizations II. Existence of conservation laws and constants of motion, J. Math. Phys., 9, 1204-1209 (1968) · Zbl 0283.35019
[26] Naz, R., 2008. Symmetry solutions and conservation laws for some partial differential equations in field mechanics, Ph.D. dissertation, University of the Witwatersrand, Johannesburg.; Naz, R., 2008. Symmetry solutions and conservation laws for some partial differential equations in field mechanics, Ph.D. dissertation, University of the Witwatersrand, Johannesburg.
[27] Naz, R.; Mahomed, F. M.; Mason, D. P., Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl. Math. Comput., 205, 212-230 (2008) · Zbl 1153.76051
[28] Newell, A. C., The history of the soliton, J. Appl. Mech., 50, 1127-1138 (1983) · Zbl 0553.76016
[29] Olver, P. J., (Applications of Lie Groups to Differential Equations. Applications of Lie Groups to Differential Equations, Grad. Texts in Math., vol. 107 (1993), Springer-Verlag: Springer-Verlag New York) · Zbl 0785.58003
[30] Poole, L.D., 2009. Symbolic computation of conservation laws of nonlinear partial differential equations using homotopy operators, Ph.D. dissertation, Colorado School of Mines, Golden, Colorado.; Poole, L.D., 2009. Symbolic computation of conservation laws of nonlinear partial differential equations using homotopy operators, Ph.D. dissertation, Colorado School of Mines, Golden, Colorado.
[31] Poole, D., Hereman, W., 2009. HomotopyIntegrator.m: a Mathematicahttp://inside.mines.edu/ whereman; Poole, D., Hereman, W., 2009. HomotopyIntegrator.m: a Mathematicahttp://inside.mines.edu/ whereman
[32] Poole, D., Hereman, W., 2009. ConservationLawsMD.m: a Mathematicahttp://inside.mines.edu/ whereman; Poole, D., Hereman, W., 2009. ConservationLawsMD.m: a Mathematicahttp://inside.mines.edu/ whereman
[33] Poole, D.; Hereman, W., The homotopy operator method for symbolic integration by parts and inversion of divergences with applications, Appl. Anal., 87, 433-455 (2010) · Zbl 1193.37077
[34] Rosenhaus, V., Infinite symmetries and conservation laws, J. Math. Phys., 43, 6129-6150 (2002) · Zbl 1060.37051
[35] Sanders, J.; Wang, J. P., Hodge decomposition and conservation laws, Math. Comput. Simulation, 44, 483-493 (1997) · Zbl 1017.35504
[36] Sanders, J., Wang, J.P., 1997b. Hodge decomposition and conservation laws; corrected paper, see URL http://www.math.vu.nl/ jansa/#research; Sanders, J., Wang, J.P., 1997b. Hodge decomposition and conservation laws; corrected paper, see URL http://www.math.vu.nl/ jansa/#research · Zbl 1017.35504
[37] Sanz-Serna, J. M., An explicit finite-difference scheme with exact conservation properties, J. Comput. Phys., 47, 199-210 (1982) · Zbl 0484.65062
[38] Sharomet, N. O., Symmetries, invariant solutions and conservation laws of the nonlinear acoustics equation, Acta Appl. Math., 15, 83-120 (1989) · Zbl 0684.58043
[39] Shivamoggi, B. K.; Rollins, D. K.; Fanjul, R., Analytic aspects of the Zakharov-Kuznetsov equation, Phys. Scr., 47, 15-17 (1993) · Zbl 1063.35552
[40] Tikhonov, A. N.; Samarskii, A. A., Equations of Mathematical Physics (1963), Dover Publications: Dover Publications New York · Zbl 0111.29008
[41] Vinogradov, A. M., Symmetries and conservation laws of partial differential equations: basic notions and results, Acta Appl. Math., 15, 3-21 (1989) · Zbl 0692.35002
[42] Wolf, T., A comparison of four approaches to the calculation of conservation laws, European J. Appl. Math., 13, 129-152 (2002) · Zbl 1002.35008
[43] Zakharov, V. E.; Kuznetsov, E. A., Three-dimensional solitons, Sov. Phys. JETP, 39, 285-286 (1974)
[44] Zakharov, V. E.; Shabat, A. B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34, 62-69 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.