×

A parallel algorithm for the concurrent atomistic-continuum methodology. (English) Zbl 07536743

Summary: In this work we present a parallel algorithm for the Concurrent Atomistic Continuum (CAC) formulation that can be integrated into existing molecular dynamics codes. The CAC methodology is briefly introduced and its parallel implementation in LAMMPS is detailed and then demonstrated through benchmarks that compare CAC simulation results with corresponding all-MD (molecular dynamics) results. The parallel efficiency of the algorithm is demonstrated when simulating systems represented by both atoms and finite elements. The verification benchmarks include dynamic crack propagation and branching in a Si single crystal, wave propagation and scattering in a Si phononic crystal, and phonon transport through the phase interface in a PbTe/PbSe heteroepitaxial system. In each of these benchmarks the CAC algorithm is shown to be in good agreement with MD-only models. This parallel CAC algorithm thus offers one of the first scalable multiscale material simulation methodologies that relies solely on atomic-interaction models.

MSC:

74Axx Generalities, axiomatics, foundations of continuum mechanics of solids
74-XX Mechanics of deformable solids
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)

Software:

Kokkos; ParaView
Full Text: DOI

References:

[1] Ikesue, A., Polycrystalline nd: YAG ceramics lasers, Opt. Mater., 19, 183-187 (2002)
[2] Ayachit, U., The paraview guide: a parallel visualization application (2015), Kitware, Inc.
[3] Parr, R. G., (Horizons of Quantum Chemistry (1980), Springer), 5-15
[4] Martin, R. M.; Martin, R. M., Electronic Structure: Basic Theory and Practical Methods (2004), Cambridge University Press · Zbl 1152.74303
[5] Haile, J. M., Molecular Dynamics Simulation: Elementary Methods (1992), John Wiley & Sons, Inc.
[6] Hemminger, J.; Crabtree, G.; Sarrao, J., From quanta to the continuum: Opportunities for Mesoscale Science, 1601-1606 (2012), A Report from the Basic Energy Sciences Advisory Committee, Tech. Rep.
[7] Dolbow, J.; Khaleel, M.; Mitchell, J., Multiscale mathematics initiative: a roadmap (2004), US Department of Energy, Report No. PNNL-14966
[8] Diaz, A.; McDowell, D.; Chen, Y., (Generalized Models and Non-classical Approaches in Complex Materials, vol. 2 (2018), Springer), 55-77 · Zbl 1412.74004
[9] Chen, Y.; Shabanov, S.; McDowell, D. L., Concurrent atomistic-continuum modeling of crystalline materials, J. Appl. Phys., 126, Article 101101 pp. (2019)
[10] Chen, X., Ballistic-diffusive phonon heat transport across grain boundaries, Acta Mater., 136, 355-365 (2017)
[11] Chen, X.; Xiong, L.; McDowell, D. L.; Chen, Y., Effects of phonons on mobility of dislocations and dislocation arrays, Scr. Mater., 137, 22-26 (2017)
[12] Xiong, L.; McDowell, D. L.; Chen, Y., Sub-THz phonon drag on dislocations by coarse-grained atomistic simulations, Int. J. Plast., 55, 268-278 (2014)
[13] Xiong, L.; Xu, S.; McDowell, D. L.; Chen, Y., Concurrent atomistic-continuum simulations of dislocation-void interactions in fcc crystals, Int. J. Plast., 65, 33-42 (2015)
[14] Xiong, L.; Tucker, G.; McDowell, D. L.; Chen, Y., Coarse-grained atomistic simulation of dislocations, J. Mech. Phys. Solids, 59, 160-177 (2011) · Zbl 1270.74008
[15] Xiong, L.; Deng, Q.; Tucker, G. J.; McDowell, D. L.; Chen, Y., Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals, Int. J. Plast., 38, 86-101 (2012)
[16] Xiong, L.; McDowell, D. L.; Chen, Y., Nucleation and growth of dislocation loops in Cu, Al and Si by a concurrent atomistic-continuum method, Scr. Mater., 67, 633-636 (2012)
[17] Xiong, L., Coarse-grained elastodynamics of fast moving dislocations, Acta Mater., 104, 143-155 (2016)
[18] Yang, S.; Chen, Y., Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary, Proc. R. Soc. A, Math. Phys. Eng. Sci., 471 (2015)
[19] Yang, S.; Zhang, N.; Chen, Y., Concurrent atomistic-continuum simulation of polycrystalline strontium titanate, Philos. Mag., 95, 2697-2716 (2015)
[20] Xu, S.; xiong, L.; Chen, Y.; McDowell, D. L., Validation of the concurrent atomistic-continuum method on screw dislocation/stacking fault interactions, Crystals, 7, 120 (2017)
[21] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1-19 (1995) · Zbl 0830.65120
[22] Irving, J.; Kirkwood, J. G., The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys., 18, 817-829 (1950)
[23] Kirkwood, J. G., The statistical mechanical theory of transport processes I. General theory, J. Chem. Phys., 14, 180-201 (1946)
[24] Chen, Y., Reformulation of microscopic balance equations for multiscale materials modeling, J. Chem. Phys., 130, Article 134706 pp. (2009)
[25] Chen, Y.; Lee, J., Atomistic formulation of a multiscale field theory for nano/micro solids, Philos. Mag., 85, 4095-4126 (2005)
[26] Chen, Y.; Zimmerman, J.; Krivtsov, A.; McDowell, D. L., Assessment of atomistic coarse-graining methods, Int. J. Eng. Sci., 49, 1337-1349 (2011)
[27] Eringen, A. C., Microcontinuum Field Theories: Foundations and Solids, vol. 487 (1999), Springer New York · Zbl 0953.74002
[28] Chen, Y.; Lee, J. D.; Eskandarian, A., Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation, Int. J. Eng. Sci., 41, 61-83 (2003) · Zbl 1211.74014
[29] Eringen, A. C., Mechanics of Micromorphic Continua (1968), Springer · Zbl 0181.53802
[30] Chen, Y.; Lee, J. D., Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables, Physica A, 322, 359-376 (2003) · Zbl 1076.74502
[31] Chen, Y.; Lee, J. D., Connecting molecular dynamics to micromorphic theory. (II). Balance laws, Physica A, 322, 377-392 (2003) · Zbl 1077.74509
[32] Chen, Y.; Lee, J.; Eskandarian, A., Atomistic counterpart of micromorphic theory, Acta Mech., 161, 81-102 (2003) · Zbl 1064.74011
[33] Chen, Y.; Lee, J. D., Determining material constants in micromorphic theory through phonon dispersion relations, Int. J. Eng. Sci., 41, 871-886 (2003)
[34] Schwartz, L., Mathématique, I. d. Théorie des Distributions, vol. 2 (1957), Hermann: Hermann Paris · Zbl 0078.11003
[35] Rao, S. S., The Finite Element Method in Engineering (2017), Butterworth-Heinemann
[36] Vladimirov, V. S., Equations of Mathematical Physics (1976), Moscow Izdatel. Nauka · Zbl 0499.35001
[37] Xu, S., PyCAC: the concurrent atomistic-continuum simulation environment, J. Mater. Res., 33, 857-871 (2018)
[38] Chen, X.; Diaz, A.; Xiong, L.; McDowell, D. L.; Chen, Y., Passing waves from atomistic to continuum, J. Comput. Phys., 354, 393-402 (2018)
[39] Chen, H., A spatial decomposition parallel algorithm for a concurrent atomistic-continuum simulator and its preliminary applications, Comput. Mater. Sci., 144, 1-10 (2018)
[40] Li, Y., Phonon spectrum and phonon focusing in coarse-grained atomistic simulations, Comput. Mater. Sci., 162, 21-32 (2019)
[41] Deng, Q.; Xiong, L.; Chen, Y., Coarse-graining atomistic dynamics of brittle fracture by finite element method, Int. J. Plast., 26, 1402-1414 (2010) · Zbl 1431.74103
[42] Deng, Q.; Chen, Y., A coarse-grained atomistic method for 3D dynamic fracture simulation, Int. J. Multiscale Comput. Eng., 11, 227-237 (2013)
[43] Xiong, L.; Chen, Y., Coarse-grained simulations of single-crystal silicon, Model. Simul. Mater. Sci. Eng., 17, Article 035002 pp. (2009)
[44] Xiong, L.; Deng, Q.; Tucker, G.; McDowell, D. L.; Chen, Y., A concurrent scheme for passing dislocations from atomistic to continuum domains, Acta Mater., 60, 899-913 (2012)
[45] Yang, S.; Xiong, L.; Deng, Q.; Chen, Y., Concurrent atomistic and continuum simulation of strontium titanate, Acta Mater., 61, 89-102 (2013)
[46] Chu, K.; Diaz, A.; Chen, Y.; Zhu, T.; McDowell, D. L., Multiscale concurrent Atomistic-Continuum (CAC) modeling of multicomponent alloys, Comput. Mater. Sci., 201, Article 110873 pp. (2022)
[47] Xu, S.; Xiong, L.; Chen, Y.; McDowell, D. L., Edge dislocations bowing out from a row of collinear obstacles in Al, Scr. Mater., 123, 135-139 (2016)
[48] Xu, S.; Xiong, L.; Chen, Y.; McDowell, D. L., An analysis of key characteristics of the Frank-Read source process in FCC metals, J. Mech. Phys. Solids, 96, 460-476 (2016)
[49] Xu, S.; Xiong, L.; Chen, Y.; McDowell, D. L., Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study, npj Comput. Mater., 2, Article 15016 pp. (2016)
[50] Xu, S.; Xiong, L.; Chen, Y.; McDowell, D. L., Shear stress-and line length-dependent screw dislocation cross-slip in FCC Ni, Acta Mater., 122, 412-419 (2017)
[51] Yang, S.; Chen, Y., (Multiscale Materials Modeling for Nanomechanics (2016), Springer International Publishing), 261-296
[52] Li, Y.; diaz, A.; Chen, X.; McDowell, D. L.; Chen, Y., Interference, scattering, and transmission of acoustic phonons in Si phononic crystals, Acta Mater., 224, Article 117481 pp. (2022)
[53] Hager, W. W.; Zhang, H., A new active set algorithm for box constrained optimization, SIAM J. Optim., 17, 526-557 (2006) · Zbl 1165.90570
[54] Berger, M. J.; Bokhari, S. H., A partitioning strategy for nonuniform problems on multiprocessors, IEEE Trans. Comput., 570, 580 (1987)
[55] Plimpton, S., LAMMPS documentation (2003)
[56] Daw, M. S.; Baskes, M. I., Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, 29, 6443-6453 (1984)
[57] Holian, B. L.; Ravelo, R., Fracture simulations using large-scale molecular dynamics, Phys. Rev. B, 51, Article 11275 pp. (1995)
[58] Hauch, J. A.; Holland, D.; Marder, M. P.; Swinney, H. L., Dynamic fracture in single crystal silicon, Phys. Rev. Lett., 82, 3823 (1999)
[59] Holland, D.; Marder, M., Cracks and atoms, Adv. Mater., 11, 793-806 (1999)
[60] Chen, Y.; Diaz, A., Local momentum and heat fluxes in transient transport processes and inhomogeneous systems, Phys. Rev. E, 94, Article 053309 pp. (2016)
[61] Chen, Y.; Diaz, A., Physical foundation and consistent formulation of atomic-level fluxes in transport processes, Phys. Rev. E, 98, Article 052113 pp. (2018)
[62] Diaz, A.; Davydov, D.; Chen, Y., On the equivalence of the two foundational formulations for atomistic flux in inhomogeneous transport processes, Proc. R. Soc. A, 475, Article 20180688 pp. (2019) · Zbl 1427.82038
[63] Stillinger, F. H.; Weber, T. A., Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 31, 5262 (1985)
[64] Maldovan, M., Sound and heat revolutions in phononics, Nature, 503, 209-217 (2013)
[65] Yu, J.-K.; Mitrovic, S.; Tham, D.; Varghese, J.; Heath, J. R., Reduction of thermal conductivity in phononic nanomesh structures, Nat. Nanotechnol., 5, 718 (2010)
[66] Maldovan, M., Phonon wave interference and thermal bandgap materials, Nat. Mater., 14, 667-674 (2015)
[67] Chen, X.; Chernatynskiy, A.; Xiong, L.; Chen, Y., A coherent phonon pulse model for transient phonon thermal transport, Comput. Phys. Commun. (2015)
[68] Schelling, P.; Phillpot, S.; Keblinski, P., Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation, Appl. Phys. Lett., 80, 2484-2486 (2002)
[69] Vreeland, T.; Jassby, K., Dislocation interactions with thermal phonons and conduction electrons (1972), California Inst. of Tech., Pasadena. WM Keck Lab. of Engineering Materials
[70] Maurel, A.; Pagneux, V.; Barra, F.; Lund, F., Interaction of a surface wave with a dislocation, Phys. Rev. B, 75, Article 224112 pp. (2007)
[71] Deng, B.; Chernatynskiy, A.; Shukla, P.; Sinnott, S. B.; Phillpot, S. R., Effects of edge dislocations on thermal transport in UO2, J. Nucl. Mater., 434, 203-209 (2013)
[72] Zheng, Z., Phonon thermal transport through tilt grain boundaries in strontium titanate, J. Appl. Phys., 116, Article 073706 pp. (2014)
[73] Springholz, G.; Wiesauer, K., Nanoscale dislocation patterning in PbTe/PbSe (001) lattice-mismatched heteroepitaxy, Phys. Rev. Lett., 88, Article 015507 pp. (2001)
[74] Wiesauer, K.; Springholz, G., Critical thickness and strain relaxation in high-misfit heteroepitaxial systems: PbTe 1− x Se x on PbSe (001), Phys. Rev. B, 69, Article 245313 pp. (2004)
[75] Lee, S.-M.; Cahill, D. G.; Venkatasubramanian, R., Thermal conductivity of Si-Ge superlattices, Appl. Phys. Lett., 70, 2957-2959 (1997)
[76] Li, Y.; Fan, Z.; Li, W.; McDowell, D. L.; Chen, Y., A multiscale study of misfit dislocations in PbTe/PbSe (001) heteroepitaxy, J. Mater. Res., 34, 2306-2314 (2019)
[77] Stukowski, A.; Bulatov, V. V.; Arsenlis, A., Automated identification and indexing of dislocations in crystal interfaces, Model. Simul. Mater. Sci. Eng., 20, Article 085007 pp. (2012)
[78] Edwards, H. C.; Trott, C. R.; Sunderland, D., Kokkos: enabling manycore performance portability through polymorphic memory access patterns, J. Parallel Distrib. Comput., 74, 3202-3216 (2014)
[79] Chen, Y., The origin of the distinction between microscopic formulas for stress and Cauchy stress, Europhys. Lett., 116, Article 34003 pp. (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.