×

A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions. (English) Zbl 1349.76498

Summary: In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier-Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76Z05 Physiological flows
92C35 Physiological flow

Software:

IIMPACK; FISHPAK
Full Text: DOI

References:

[1] Adams, J.; Swarztrauber, P.; Sweet, R., Fishpack: efficient Fortran subprograms for the solution of separable elliptic partial differential equations
[2] Agarwal, A.; Tai, C. F.; Chung, J. N., Unsteady development of a deformable bubble rising in a quiescent liquid, Comput. Methods Appl. Mech. Eng., 199, 17-20, 1080-1090 (2010) · Zbl 1227.76062
[3] Almgren, A.; Bell, J.; Collella, P.; Marthaler, T., A Cartesian grid projection method for the incompressible Euler equations in complex geometries, SIAM J. Sci. Comput., 18, 1289-1309 (1997) · Zbl 0910.76040
[4] Bedrossian, J.; Von Brecht, J.; Zhu, S.; Sifakis, E.; Teran, J., A second order virtual node method for Poisson interface problems on irregular domains, J. Comput. Phys., 221, 6405-6426 (2010) · Zbl 1197.65168
[5] Bell, J. B.; Colella, P.; Glaz, H. M., A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85, 257-283 (1989) · Zbl 0681.76030
[6] Billaud, M.; Gallice, G.; Nkonga, B., A simple stabilized finite element method for solving two phase compressible-incompressible interface flows, Comput. Methods Appl. Mech. Eng., 200, 1272-1290 (2011) · Zbl 1225.76191
[7] Bouffanais, R.; Deville, M. O., Mesh update techniques for free-surface flow solvers using spectral element method, J. Sci. Comput., 27, 1-3, 137-149 (2006) · Zbl 1099.76047
[8] Brown, D. L.; Cortez, R.; Minion, M. L., Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 168, 464 (2001) · Zbl 1153.76339
[9] Caboussat, A.; Picasso, M.; Rappaz, J., Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas, J. Comput. Phys., 203, 626-649 (2005) · Zbl 1143.76530
[10] Caiden, R.; Fedkiw, R.; Anderson, C., A numerical method for two phase flow consisting of separate compressible and incompressible regions, J. Comput. Phys., 166, 1-27 (2001) · Zbl 0990.76065
[11] Can, E.; Prosperetti, A., A level set method for vapor bubble dynamics, J. Comput. Phys., 231, 4, 1533-1552 (2012) · Zbl 1408.76401
[12] Coco, A.; Russo, G., Second order multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface, I: one dimensional problems, Numer. Math., Theory Methods Appl., 5, 19-42 (2012) · Zbl 1265.65251
[13] Compere, G.; Marchandise, E.; Remacle, J. F., Transient adaptivity applied to two-phase incompressible flows, J. Comput. Phys., 227, 3, 1923-1942 (2008) · Zbl 1135.76031
[14] E, W.; Liu, J., Projection method: I: convergence and numerical boundary-layers, SIAM J. Numer. Anal., 32, 1017-1057 (1995) · Zbl 0842.76052
[15] Francois, M.; Marianne, S. J.; Dendy, E. D.; Kothe, D. B.; Sicilian, J. M.; Williams, N. W., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J. Comput. Phys., 213, 1, 141-173 (2006) · Zbl 1137.76465
[16] Gerlach, D.; Tomar, G.; Biswas, G.; Durst, F., Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows, Int. J. Heat Mass Transf., 49, 3, 740-754 (2006) · Zbl 1189.76363
[17] Gibou, F.; Fedkiw, R., A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains with applications to the Stefan problem, J. Comput. Phys., 202, 2, 577-601 (2005) · Zbl 1061.65079
[18] Guermond, J. L.; Minev, P.; Shen, J., Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions, SIAM J. Numer. Anal., 43, 239-258 (2005) · Zbl 1083.76044
[19] Helenbrook, B. T., A two-fluid spectral-element method, Comput. Methods Appl. Mech. Eng., 191, 3, 273-294 (2001) · Zbl 0999.76101
[20] Ho, L.-W.; Patera, A. T., A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows, Comput. Methods Appl. Mech. Eng., 80, 1, 355-366 (1990) · Zbl 0722.76052
[21] Ho, L.-W.; Patera, A. T., Variational formulation of three-dimensional viscous free-surface flows: natural imposition of surface tension boundary conditions, Int. J. Numer. Methods Fluids, 13, 6, 691-698 (1991) · Zbl 0739.76057
[22] Hunter, J.; Li, Z.; Zhao, H., Autophobic spreading of drops, J. Comput. Phys., 183, 335-366 (2002) · Zbl 1046.76036
[23] Li, Z., Immersed interface method for moving interface problems, Numer. Algorithms, 14, 269-293 (1997) · Zbl 0886.65096
[24] Ito, K.; Li, Z.; Lai, M.-C., An augmented method for the Navier-Stokes equations on irregular domains, J. Comput. Phys., 228, 2616-2628 (2009) · Zbl 1275.76170
[25] Johnston, H.; Liu, J., Finite difference schemes for incompressible flow based on local pressure boundary conditions, J. Comput. Phys., 180, 120-154 (2002) · Zbl 1130.76409
[26] Johnston, H.; Liu, J., Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term, J. Comput. Phys., 188, 221-259 (2004) · Zbl 1127.76343
[27] Kang, I. S.; Leal, L. G., Numerical solution of axisymmetric, unsteady free-boundary problems at finite Reynolds number, Phys. Fluids, 30, 1929-1940 (1987) · Zbl 0632.76121
[28] Li, Z.; Lai, M.-C.; He, G.; Zhao, H., An augmented method for free boundary problems with moving contact lines, Comput. Fluids, 39, 1033-1040 (2010) · Zbl 1242.76047
[29] Li, Z., IIMPACK: a collection of Fortran codes for interface problems, last updated: 2008
[30] Li, Z.; Ito, K., The Immersed Interface Method - Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, SIAM Frontier Series in Applied Mathematics (2006), FR33 · Zbl 1122.65096
[31] Li, Z.; Ito, K.; Lai, M.-C., An augmented approach for Stokes equations with a discontinuous viscosity and singular forces, Comput. Fluids, 36, 622-635 (2007) · Zbl 1177.76291
[32] Li, Z.; Lai, M.-C., The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171, 822-842 (2001) · Zbl 1065.76568
[33] Li, Z.; Wan, X.; Ito, K.; Lubkin, S., An augmented pressure boundary condition for a Stokes flow with a non-slip boundary condition, Commun. Comput. Phys., 1, 874-885 (2006) · Zbl 1115.76373
[34] Li, Z.; Zhao, H.; Gao, H., A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid, J. Comput. Phys., 152, 281-304 (1999) · Zbl 0956.78016
[35] Liu, J., Open and traction boundary conditions for the incompressible Navier-Stokes equations, J. Comput. Phys., 228, 7250-7267 (2009) · Zbl 1386.76114
[36] Liovic, P.; Francois, M.; Rudman, M.; Manasseh, R., Efficient simulation of surface tension-dominated flows through enhanced interface geometry interrogation, J. Comput. Phys., 229, 19, 7520-7544 (2010) · Zbl 1425.76165
[37] van der Pijl, S. P.; Segal, A.; Vuik, C.; Wesseling, P., A mass conserving level-set method for modelling of multi-phase flows, Int. J. Numer. Methods Fluids, 47, 4, 339-361 (2005) · Zbl 1065.76160
[38] Poux, A.; Glockner, S.; Azaiz, M., Improvements on open and traction boundary conditions for Navier-Stokes time-splitting methods, J. Comput. Phys., 230, 4011-4027 (2011) · Zbl 1331.76089
[39] Raessi, M.; Mostaghimi, J.; Bussmann, M., A volume-of-fluid interfacial flow solver with advected normals, Comput. Fluids, 39, 8, 1401-1410 (2010) · Zbl 1242.76256
[40] Ronquist, E. M.; Patera, A. T., A Legendre spectral element method for the Stefan problem, Int. J. Numer. Methods Eng., 24, 12, 2273-2299 (1987) · Zbl 0632.65126
[41] Samiei, E.; Shams, M.; Ebrahimi, R., A novel numerical scheme for the investigation of surface tension effects on growth and collapse stages of cavitation bubbles, Eur. J. Mech. B, Fluids, 30, 1, 41-50 (2011) · Zbl 1222.76099
[42] Sussman, M., A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, J. Comput. Phys., 187, 1, 110-136 (2003) · Zbl 1047.76085
[43] Sussman, M.; Puckett, E. G., A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162, 301-337 (2000) · Zbl 0977.76071
[44] Sussman, M., A parallelized, adaptive algorithm for multiphase flows in general geometries, Comput. Struct., 83, 435-444 (2005)
[45] Sussman, M.; Smith, K. M.; Hussaini, M. Y.; Ohta, M.; Zhi-Wei, R., A sharp interface method for incompressible two-phase flows, J. Comput. Phys., 221, 469-505 (2007) · Zbl 1194.76219
[46] Tai, C. F.; Chung, J. N., A direct numerical simulation of axisymmetric liquid-gas two-phase laminar flows in a pipe, Int. J. Numer. Methods Fluids, 66, 1, 97-122 (2011) · Zbl 1429.76106
[47] Zhang, Z.-Y.; Zhang, H.-S., Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall, Phys. Rev. E, 70, 5, 056310 (2004)
[48] Xiao, L.; Cai, Q.; Li, Z.; Zhao, H.; Luo, R., A multi-scale method for dynamics simulation in continuum solvent models I: finite-difference algorithm for Navier-Stokes equation, Chem. Phys. Lett., 616-617, 67-74 (2014)
[49] Xiao, L.; Wang, C.; Luo, R., Recent progress in adapting Poisson-Boltzmann methods to molecular simulations, J. Theor. Comput. Chem., 13, 1430001 (2014)
[50] Botello-Smith, W. M.; Cai, Q.; Luo, R., Biological applications of classical electrostatics methods, J. Theor. Comput. Chem., 13, 1440008 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.