×

Stable generalized finite element method (SGFEM) for parabolic interface problems. (English) Zbl 1464.65135

Summary: We study a stable generalized finite element method (SGFEM) for parabolic interface problems with smooth interfaces. The standard finite element (FE) space based on a simple mesh is enriched by a one-side distance function to simulate gradient jumps of exact solutions on the interfaces. The mesh is (quasi)uniform and independent of the interfaces so that mesh matching or refinement along the interfaces is not needed. The main idea to derive the SGFEM is to modify the one-side distance function by subtracting its FE interpolant. The SGFEM approximates the parabolic interface problem with an optimal convergence rate and is stable in that its scaled condition number is of the same order as the FEM \((O(h^{- 2})\), \(h\) is a mesh-size parameter) and does not depend on the relative positions of the mesh and interfaces. The proposed SGFEM is a conforming method and is free from any penalty parameters or stability schemes. Moreover, the components of the approximation functions of the SGFEM are independent when extended to vector-valued interface problems. The optimal convergence rates of SGFEM for curved interfaces are proven theoretically for the backward Euler and Crank-Nicolson formulations. The convergence and conditioning are tested by numerical experiments.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65F35 Numerical computation of matrix norms, conditioning, scaling

Software:

IIMPACK
Full Text: DOI

References:

[1] Edwards, D. A.; Brenner, H.; Wasan, D. T., Interfacial Transport Process and Rheology (1991), Butterworths/Heinemann: Butterworths/Heinemann London
[2] Bear, J., Dynamics of Fluids in Porous Media (1972), Dover Publications: Dover Publications Inc. New York · Zbl 1191.76001
[3] Li, Z.; Ito, K., The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (2006), SIAM · Zbl 1122.65096
[4] Peskin, C. S., Numerical analysis of blood flow in heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[5] Babuška, I., The finite element method for elliptic equations with discontinuous coefficients, Computing, 5, 207-218 (1970) · Zbl 0199.50603
[6] Barrett, J. W.; Elliott, C. M., Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal., 7, 283-300 (1987) · Zbl 0629.65118
[7] Chen, Z.; Zou, J., Finite element methods and their convergence for elliptic and parabolic interface problems, J. Numer. Math., 79, 175-202 (1998) · Zbl 0909.65085
[8] Huang, J.; Zou, J., Uniform a priori estimates for elliptic and static maxwell interface problems, Discrete Contin. Dyn. Syst. Ser. B, 7, 145-170 (2007) · Zbl 1130.35020
[9] Eriksson, K.; Johnson, C., Adaptive finite element methods for parabolic problems II: Optimal error estimates in \(L_\infty L_2\) and \(L_\infty L_\infty \), SIAM J. Numer. Anal., 32, 706-740 (1995) · Zbl 0830.65094
[10] Li, Z.; Ji, H.; Chen, X., Accurate solution and gradient computation for elliptic interface problems with variable coefficients, SIAM J. Numer. Anal., 55, 570-597 (2017) · Zbl 1362.76037
[11] Liu, X.; Sideris, T., Convergence of the ghost fluid method for elliptic equations with interfaces, Math. Comp., 72, 1731-1746 (2003) · Zbl 1027.65140
[12] Zhou, Y.; Zhao, S.; Feig, M.; Wei, G., High order matched interface and boundary (MIB) schemes for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 231, 1-30 (2006) · Zbl 1089.65117
[13] Ewing, R.; Li, Z.; Lin, T.; Lin, Y., The immersed finite volume element methods for the elliptic interface problems, Math. Comput. Simulation, 50, 63-76 (1999) · Zbl 1027.65155
[14] Lin, T.; Lin, Y.; Zhang, X., Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53, 1121-1144 (2015) · Zbl 1316.65104
[15] Li, Z.; Lin, T.; Wu, X., New cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 61-98 (2003) · Zbl 1055.65130
[16] Patel, A.; Acharya, S. K.; Pani, A. K., Stabilized Lagrange multiplier method for elliptic and parabolic interface problems, Appl. Numer. Math., 120, 287-304 (2017) · Zbl 1370.65055
[17] Huang, P.; Wu, H.; Xiao, Y., An unfitted interface penalty finite element method for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 323, 439-460 (2017) · Zbl 1439.74422
[18] Harari, I.; Dolbow, J., Analysis of an efficient finite element method for embedded interface problems, Comput. Math., 46, 205-211 (2010) · Zbl 1190.65172
[19] Lehrenfeld, C.; Reusken, A., Analysis of a Nitsche XFEM-DG discretization for a class of two-phase mass transport problems, SIAM J. Numer. Anal., 51, 958-983 (2013) · Zbl 1268.76033
[20] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 5537-5552 (2002) · Zbl 1035.65125
[21] Hansbo, P.; Larson, M. G.; Zahedi, S., A cut finite element method for a Stokes interface problem, Appl. Numer. Math., 85, 90-114 (2014) · Zbl 1299.76136
[22] Cai, Z.; Ye, X.; Zhang, S., Discontinuous Galerkin finite element methods for interface problems: A priori and a posteriori error estimations, SIAM J. Numer. Anal., 49, 1761-1787 (2011) · Zbl 1232.65142
[23] Babuška, I.; Banerjee, U.; Kergrene, K., Strongly stable generalized finite element method: application to interface problems, Comput. Methods Appl. Mech. Engrg., 327, 58-92 (2017) · Zbl 1439.74385
[24] Zhang, Q.; Banerjee, U.; Babuška, I., Strongly stable generalized finite element method (SSGFEM) for a non-smooth interface problem, Comput. Methods Appl. Mech. Engrg., 344, 538-568 (2019) · Zbl 1440.74454
[25] Kergrene, K.; Babuška, I.; Banerjee, U., Stable generalized finite element method and associated iterative schemes: application to interface problems, Comput. Methods Appl. Mech. Engrg., 305, 1-36 (2016) · Zbl 1425.74472
[26] Chessa, J.; Belytschko, T., An extended finite element method for two-phase fluids, J. Appl. Mech., 70, 10-17 (2003) · Zbl 1110.74391
[27] Legrain, G.; Moës, N.; Huerta, A., Stability of incompressible formulations enriched with X-FEM, Comput. Methods Appl. Mech. Engrg., 197, 1835-1849 (2008) · Zbl 1194.74426
[28] Moës, N.; Cloirec, M.; Cartraud, P.; Remacle, J. F., A computational approach to handle complex microstructure geometries, Comput. Methods Appl. Mech. Engrg., 192, 3163-3177 (2003) · Zbl 1054.74056
[29] Cheng, K. W.; Fries, T. P., Higher-order XFEM for curved strong and weak discontinuities, Internat. J. Numer. Methods Engrg., 82, 564-590 (2010) · Zbl 1188.74052
[30] Sauerland, H.; Fries, T. P., The extended finite element method for two-phase and free-surface flows: A systematic study, J. Comput. Phys., 230, 3369-3390 (2011) · Zbl 1316.76050
[31] Wang, H.; Chen, J.; Sun, P.; Qin, F., A conforming enriched finite element method for elliptic interface problems, Appl. Numer. Math., 127, 1-17 (2018) · Zbl 1382.65420
[32] Babuška, I.; Melenk, J. M., The partition of unity finite element method, Internat. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[33] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg., 181, 43-69 (2001) · Zbl 0983.65127
[34] Babuška, I.; Banerjee, U., Stable generalized finite element method (SGFEM), Comput. Methods Appl. Mech. Engrg., 201-204, 91-111 (2011) · Zbl 1239.74093
[35] Babuška, I.; Banerjee, U.; Osborn, J., Survey of meshless and generalized finite element methods: a unified approach, Acta Numer., 12, 1-125 (2003) · Zbl 1048.65105
[36] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Model. Simul. Mater. Sci. Eng., 17, 43-74 (2009)
[37] Fries, T. P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 253-304 (2010) · Zbl 1202.74169
[38] Efendiev, Y.; Hou, T. Y., Multiscale Finite Element Methods: Theory and Applications (2009), Springer · Zbl 1163.65080
[39] Sauerland, H.; Fries, T. P., The stable XFEM for two-phase flows, Comput. & Fluids, 87, 41-49 (2013) · Zbl 1290.76073
[40] Fries, T. P.; Zilian, A., On time integration in the XFEM, Internat. J. Numer. Methods Engrg., 79, 69-93 (2009) · Zbl 1171.76418
[41] Gross, S.; Ludescher, T.; Olshanskii, M.; Reusken, A., Robust preconditioning for XFEM applied to time-dependent Stokes problems, SIAM J. Sci. Comput., 38, A3492-A3514 (2016) · Zbl 1398.76106
[42] Kirchhart, M.; Gross, S.; Reusken, A., Analysis of an XFEM discretization for Stokes interface problems, SIAM J. Sci. Comput., 38, A1019-A1043 (2016) · Zbl 1381.76182
[43] Zunino, P., Analysis of backward euler/extended finite element discretization of parabolic problems with moving interfaces, Comput. Methods Appl. Mech. Engrg., 258, 152-165 (2013) · Zbl 1286.65129
[44] Loehnert, S., A stabilization technique for the regularization of nearly singular extended finite elements, Comput. Mech., 54, 523-533 (2014) · Zbl 1398.74362
[45] Menk, A.; Bordas, S. P.A., A robust preconditioning technique for the extended finite element method, Internat. J. Numer. Methods Engrg., 85, 13, 1609-1632 (2011) · Zbl 1217.74128
[46] Béchet, E.; Minnebo, H.; Moës, N.; Burgardt, B., Improved implementation and robustness study of the x-FEM method for stress analysis around cracks, Internat. J. Numer. Methods Engrg., 64, 1033-1056 (2005) · Zbl 1122.74499
[47] Lang, C.; Makhija, D.; Doostan, A.; Maute, K., A simple and efficient preconditioning scheme for heaviside enriched XFEM, Comput. Mech., 54, 1357-1374 (2014) · Zbl 1311.74124
[48] Schweitzer, M. A., Stable enrichment and local preconditioning in the particle-partition of unity method, Numer. Math., 118, 137-170 (2011) · Zbl 1217.65210
[49] Agathos, K.; Bordas, S. P.A.; Chatzi, E., Improving the conditioning of XFEM/GFEM for fracture mechanics problems through enrichment quasi-orthogonalization, Comput. Methods Appl. Mech. Engrg. (2018), (in press) · Zbl 1440.74351
[50] Zhang, Q.; Banerjee, U.; Babuska, I., High order stable generalized finite element methods, Numer. Math., 128, 1-29 (2014) · Zbl 1304.65254
[51] Zhang, Q.; Babuška, I.; Banerjee, U., Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities, Comput. Methods Appl. Mech. Engrg., 311, 476-502 (2016) · Zbl 1439.74479
[52] Gupta, V.; Duarte, C. A.; Babuška, I.; Banerjee, U., A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics, Comput. Methods Appl. Mech. Engrg., 266, 23-39 (2013) · Zbl 1286.74102
[53] Sanchez-Rivadeneira, A. G.; Duarte, C. A., A stable generalized/extended FEM with discontinuous interpolants for fracture mechanics, Comput. Methods Appl. Mech. Engrg., 345, 876-918 (2019) · Zbl 1440.74438
[54] Zhu, L.; Zhang, Z.; Li, Z., An immersed finite volume element method for 2D PDEs with discontinuous coefficients and non-homogeneuos jump conditions, Comput. Math. Appl., 70, 89-103 (2015) · Zbl 1443.65293
[55] Li, Z.; Wang, W.; Chern, I. L.; Lai, M., New formulations for interface problems in polar coordinates, SIAM J. Sci. Comput., 25, 224-245 (2003) · Zbl 1040.65087
[56] Thomee, V., Galerkin Finite Element Methods for Parabolic Problems (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0884.65097
[57] Bochev, P.; Lehoucq, R. B., On the finite element solution of the pure Neumann problem, SIAM Rev., 47, 1, 50-66 (2005) · Zbl 1084.65111
[58] Fries, T. P., A corrected XFEM approximation without problems in blending elements, Internat. J. Numer. Methods Engrg., 75, 503-532 (2008) · Zbl 1195.74173
[59] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (2008), Springer USA · Zbl 1135.65042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.